论文

青藏高原地表辐射通量的气候特征分析

  • 谷星月 ,
  • 马耀明 ,
  • 马伟强 ,
  • 孙方林
展开
  • 中国科学院青藏高原环境变化与地表过程重点实验室, 中国科学院青藏高原研究所, 北京 100101;中国科学院大学, 北京 100049;中国科学院青藏高原地球科学卓越创新中心, 北京 100101;中国科学院西北生态环境资源研究院, 甘肃 兰州 730000

收稿日期: 2018-03-03

  网络出版日期: 2018-12-28

基金资助

中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC019);国家自然科学基金项目(41661144043,41830650,91637313,91737205)

Climatic Characteristics of Surface Radiation Flux over the Qinghai-Tibetan Plateau

  • GU Xingyue ,
  • MA Yaoming ,
  • MA Weiqiang ,
  • SUN Fanglin
Expand
  • Key Laboratory of Tibetan Environment Change and Land Surface Process. Institute of Tibetan Plateau Research Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China;CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2018-03-03

  Online published: 2018-12-28

摘要

基于对"全球能量水循环亚洲季风青藏高原试验研究"(GAME/Tibet)和"全球协调加强观测计划(CEOP)之亚澳季风青藏高原试验"(CAMP/Tibet)设在藏北高原的安多站、BJ站、D105站和NPAM站以及中国科学院珠峰站和中国科学院纳木错站10~20年晴天日间的辐射观测资料求年均值,分析了高原草甸(草高为5 cm的高原草甸,10 cm的高原草甸和高原稀疏草甸,15 cm的高原草甸)、戈壁和临湖高原草甸这些典型下垫面观测站多年观测的短波向下辐射、短波向上辐射、长波向上辐射、长波向下辐射、净辐射通量和地表反照率的年际变化,得出了青藏高原地表辐射通量的气候特征,发现高原上大部分站点观测到的短波向下辐射有不同程度的减小的年变化趋势,基本所有站点观测的长波向上辐射有不同程度的逐年增加趋势,且高原上基本所有站点观测的长波向下辐射有不同程度的增加趋势,高原地区大部分站点的净辐射通量的年变化趋势基本与短波向下辐射的年变化相一致,青藏高原大部分站点的地表反照率在不同程度上逐年减小。

本文引用格式

谷星月 , 马耀明 , 马伟强 , 孙方林 . 青藏高原地表辐射通量的气候特征分析[J]. 高原气象, 2018 , 37(6) : 1458 -1469 . DOI: 10.7522/j.issn.1000-0534.2018.00051

Abstract

In this paper, we used observational radiation data from the Amdo Center Station (The following is the Amdo Station, with 19 years of surface radiation observations), BJ Station (with 17 years of surface radiation observations), D105 Station (with 17 years of surface radiation observations) and NPAM (Also known as the MS3478 Site, with 17 years of surface radiation observations) Station on the Northern Qinghai-Tibetan Plateau in the GAME/Tibet[GEWEX (Global Energy and Water cycle Experiment) Asian Monsoon Experiment on the Qinghai-Tibetan Plateau] and the CAMP/Tibet[CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Qinghai-Tibetan Plateau], and the Qomolangma Station for Atmosphere and Environment Observation and Research of the Chinese Academy of Sciences (The following is the Qomolangma Station, with 12 years of surface radiation observations) and Nam Co Station for Multisphere Observation and Research of the Chinese Academy of Sciences (The following is the Nam Co Station, with 12 years of surface radiation observations). There are about 10 to 20 years of observational radiation data, calculated the daily average value at 10:00 to 18:00 on sunny days, and counted monthly average value. Finally, use these average value to find out the annual average value of observational surface radiation fluxes (short wave downward radiation, short wave upward radiation, long wave downward radiation, long wave upward radiation, net radiation flux and albedo) from the above sites. Based on the analysis of the annual variations of short wave downward radiation, short wave upward radiation, long wave upward radiation, long wave downward radiation, net radiation and albedo of the typical underlying surface (plateau meadows with a height of 5 cm, plateau meadows with a height of 10 cm, sparse plateau meadows, plateau meadows with a height of 15 cm, gobi, and plateau meadows near the lake), the long-term climate change characteristics of surface radiation fluxes of the Qinghai-Tibetan Plateau were obtained. It was found that the short wave downward radiation flux at most sites on the Qinghai-Tibetan Plateau has a decreasing trend of varying degrees of annual change. Moreover, the long wave upward radiation flux by all the stations has an increasing trend of varying degrees, and the long wave downward radiation flux by all the stations has an increasing trend of varying degrees. The annual variation of the net radiation flux at most stations in the Qinghai-Tibetan Plateau region is basically consistent with the annual change in the short wave downward radiation. And the albedo at most sites on the Qinghai-Tibetan Plateau decreases year by year to varying degrees.

参考文献

[1]Duan A M, Xiao Z, 2015. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Sci Rep, 5:13711.
[2]Li Y, Hu Z Y, 2009. A study on parameterization of surface albedo over grassland surface in the Northern Tibetan Plateau[J]. Adv Atmos Sci, 26(1):161-168.
[3]Qiu J, 2008. China:The third pole[J]. Nature, 454(7203):393-396.
[4]Tang W J, Yang K, Qin J, et al, 2010. Solar radiation trend across China in recent decades:a revisit with quality-controlled data[J]. Atmos Chem Phys, 10(8):393-406.
[5]Wang X, Ren J, Gong P, et al, 2016. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems:a 5-year air monitoring study[J]. Atmos Chemis Phys Discuss, 16(11):6901-6911.
[6]Weng D M, 1997. Radiation Climate of China[M]. Beijing:China Meteor Press, 195-198.
[7]Yanai M, Li C, 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Mon Wea Rev, 122(2):305-323.
[8]Yanai M, Wu G X, Wang B, 2006. Effects of the Tibetan Plateau. In The Asian Monsoon[M]. Germany:Springer, 513-549.
[9]Yang K, Ding B H, Qin J, et al, 2012. Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J]. Geophysical Research Letters, 39(20). DOI:10.1029/2012GL053733
[10]Zuo D K, Chen J S, Li Y H, et al, 1965. Radiation balance of the "Earth-Atmosphere" system and the atmosphere over eastern Asia[J]. Acta Geograp Sinica, 31(2):100-112.
[11]Chen A J, Liang X W, Bian L G, et al, 2016. Spatial Distribution Characteristics of MODIS Land Surface Albedo Inversions over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(6):1409-1418. DOI:10.7522/j.issn. 1000-0534.2015.00111<br/>陈爱军, 梁学伟, 卞林根, 等, 2016.青藏高原MODIS地表反照率反演结果的空间分布[J].高原气象, 35(6):1409-1418.
[12]Chu D, Ma W Q, Zha X D Z, 2015. Land surface albedo in the north Tibetan Plateau from ground observations and MODIS[J]. Remote Sens Technol Appl, 30(5):908-916. DOI:10.11873/j.issn. 1004-0323.2015.5.0908.<br/>除多, 马伟强, 扎西顿珠, 2015.藏北那曲地区地面与MODIS反演的地表反照率对比分析[J].遥感技术与应用, 30(5):908-916.
[13]Ci R N M, Dan Z L B, Xue Y J, et al, 2013. Characteristic of seasonal variation of surface radiation balance at Yangbajin in Qinghai-Xizang Plateau[J]. Plateau Meteor, 32(5):1253-1260. DOI:10.7522/j.issn. 1000-0534.2012.00120.<br/>次仁尼玛, 单增罗布, 宣越健, 等, 2013.青藏高原羊八井地区地表辐射的季节变化特征[J].高原气象, 32(5):1253-1260.
[14]Gong Y F, Duan T Y, Chen L X, et al, 2005. The variation characteristics of radiation budget components of the western Tibetan Plateau in 1997/1998[J]. Acta Geograp Sinica, 63(2):225-235. DOI:10.11676/qxxb2005.022.<br/>巩远发, 段廷扬, 陈隆勋, 等, 2005.1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J].气象学报, 63(2):225-235.
[15]Guo C L, Ma Y M, Ma W Q, et al, 2017. Relationship between the actual evapotranspiration and pan evaporation in the gobi land surface of the Qomolangma Region of the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):79-86. DOI:10.7522/j.issn. 1000-0534.2015.00120.<br/>郭晨露, 马耀明, 马伟强, 等, 2017.青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究[J].高原气象, 36(1):79-86.
[16]Huang F F, Ma W Q, Li M S, et al, 2016. Analysis on responses of land surface temperature on the northern Tibetan Plateau to climate change[J]. Plateau Meteor, 35(1):55-63. DOI:10.7522/j.issn. 1000-0534.2015.00075.<br/>黄芳芳, 马伟强, 李茂善, 等, 2016.藏北高原地表温度对气候变化响应的初步分析[J].高原气象, 35(1):55-63.
[17]Ji G L, Jiang H, Lu L Z, 1995. Characteristics of longwave radiation over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 14(4):451-458.<br/>季国良, 江灏, 吕兰芝, 1995.青藏高原的长波辐射特征[J].高原气象, 14(4):451-458.
[18]Xie J, Yu Y, Liu C, et al, 2018. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteor, 37(1):28-42. DOI:10.7522/j.issn. 1000-0534.2017.00019.<br/>解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.
[19]Li J J, Zheng B X, Yang X J, et al, 1986. Glaciers of Xizang (Tibet)[M]. Beijing:Science Press, 13-32.<br/>李吉均, 郑本兴, 杨锡金, 等, 1986.西藏冰川[M].北京:科学出版社, 13-32.
[20]Ma W Q, Ma Y M, Hu Z Y, et al, 2004. Analyses on surface radiation budget in northern Tibetan Plateau[J]. Plateau Meteor, 23(3):348-352.<br/>马伟强, 马耀明, 胡泽勇, 等, 2004.藏北高原地面辐射收支的初步分析[J].高原气象, 23(3):348-352.
[21]Ma W Q, Ma Y M, Hu Z Y, et al, 2005. The contrast between the radiation budget plus seasonal variation and remote sensing over the northern Tibetan Plateau[J]. J Arid Land Res Environ, 19(1):109-115.<br/>马伟强, 马耀明, 胡泽勇, 等, 2005.藏北高原地区辐射收支和季节变化与卫星遥感的对比分析[J].干旱区资源与环境, 19(1):109-115.
[22]Ma Y M, 2012. Multi-layer interaction observation project of Qinghai-Tibetan Plateau and its application[J]. Engineering Sciences, 14(9):28-34. DOI:10.3969/j.issn. 1009-1742.2012.09.004.<br/>马耀明, 2012.青藏高原多圈层相互作用观测工程及其应用[J].中国工程科学, 14(9):28-34.
[23]Ma Y M, Hu Z Y, Tian L D, et al, 2014. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Adv Earth Science, 29(2):207-215. DOI:10.11867/j.issn. 1001-8166.2014.02.0207.<br/>马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2):207-215.
[24]Ma Y M, Yao T D, Wang J M, 2006. Experimental study of energy and water cycle in Tibetan Plateau——The progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteor, 25(2):344-351.<br/>马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2):344-351.
[25]Wang Y, Zhu B, Liu Y, et al, 2011. Trend of surface albedo changes in China in Last Decade[J]. Meteor Sci Technol, 2(4):147-155.<br/>王艺, 朱彬, 刘煜, 等, 2011.中国地区近10年地表反照率变化趋势[J].气象科技, 2(4):147-155.
[26]Wang Y S, Sheng P X, Liu S D, et al, 1987. Atmospheric physics[M]. Beijing China Meteorological Press, 222-223.<br/>王永生, 盛裴轩, 刘式达, 等, 1987.大气物理学[M].北京:气象出版社, 222-223.
[27]Weng D M, Chen Y, 1992. Climatoligical calculation of downward atomospheric radiation for China and its characteristic distribution[J]. Trans Atmos Sci, 1:1-9.<br/>翁笃鸣, 陈媛, 1992.中国大气逆辐射的气候计算及其分布特征[J].大气科学学报, 1:1-9.
[28]Wu R S, Ma Y M, 2010. Comparative analyses on radiation characteristics in different areas over the Tibetan Plateau[J]. Plateau Meteor, 29(2):251-259.<br/>武荣盛, 马耀明, 2010.青藏高原不同地区辐射特征对比分析[J].高原气象, 29(2):251-259.
[29]Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10.7522/j.issn. 1000-0534.2016.00012.<br/>谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12.
[30]Yang J, Ma Y M, 2012. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau[J]. J Glaciol Geocry, 34(4):813-820.<br/>杨健, 马耀明, 2012.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土, 34(4):813-820.
[31]Yang L W, Gao X Q, Hui X Y, et al, 2017. Study on Turbulence Characteristics in the Atmospheric Surface Layer over Nyainrong Grassland in Central Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(4):875-885. DOI:10.7522/j.issn. 1000-0534.2016.00089<br/>杨丽薇, 高晓清, 惠小英, 等, 2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象, 36(4):875-885.
[32]Ye D Z, Gao Y X, 1979. Qinghai-Tibet Plateau Meteorology[M]. Beijing:Science Press, 13-32.<br/>叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 1-278.
[33]Ye D Z, Luo S W, Zhu B Z, 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Geograp Sinica, 28(2):108-121. DOI:10.11676/qxxb1957.010.<br/>叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2):108-121.
[34]Yu H, Zhang J, Liu S M, 2018. The variation of effective radiation in Qinghai-Tibetan Plateau based on the CERES Satellite Data[J]. Plateau Meteor, 37(1):106-122. DOI:10.7522/j.issn. 1000-0534.2017.00045.<br/>于涵, 张杰, 刘诗梦, 2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象, 37(1):106-122.
[35]Yu W, Liu Y M, Yang X Q, et al, 2018. The Interannual and Decadal Variation Characteristics of the Surface Sensible Heating at Different Elevations over the Qinghai-Tibetan Plateau and Attribution Analysis[J]. Plateau Meteor, 37(5):1161-1176. DOI:10.7522/j.issn. 1000-0534.2018.00027<br/>于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象, 37(5):1161-1176.
[36]Zhang R H, Xu X D, 2012. A new generation of atmospheric comprehensive exploration system application platform for the Tibetan Plateau and the Eastern Edge:Japan international cooperation agency (JICA) Project[J]. Engineer Sciences, 14(9):102-112.<br/>张人禾, 徐祥德, 2012.青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目[J].中国工程科学, 14(9):102-112.
[37]Zhong L, 2007. Ground measurement and satellite remote sensing of land surface characteristic parameters over the Tibetan Plateau Area[D]. Beijing: Chinese Academy of Sciences, 1-124.<br/>仲雷, 2007.青藏高原地表特征参数地基观测与卫星遥感反演研究[D].北京: 中国科学院大学, 1-124.
[38]Zhou X J, Zhao P, Chen J M, et al, 2009. Study on the influence of the thermal effect of Tibetan Plateau on Northern Hemisphere climate[J]. Science in China, 39(11):1473-1486. DOI:10.1360/zd2009-39-11-1473.<br/>周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学, 39(11):1473-1486.
[39]Zhu F K, Huang F J, Liu F M, 1990. Qinghai-Tibet plateau meteorological science experiment decade[J]. Meteor Mon, 16(3):29-30. DOI:10.7519/j.issn. 1000-0526.1990.3.007.<br/>朱福康, 黄福均, 刘富明, 1990.青藏高原气象科学实验十年[J].气象, 16(3):29-30.
[40]Zuo D K, Zhou Y H, 1991. Studies on Radiation in the Epigeosphere[M]. Beijing:Science Press, 37-39.<br/>左大康, 周允华, 1991.地球表层辐射研究[M].北京:科学出版社, 37-39.
文章导航

/