[1]Bao X H, Zhang F Q, 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. J Climate, 26(1):206-214. DOI:10.1175/JCLI-D-12-00056.1.
[2]Chen J, Wu X, Yin Y, et al, 2015. Characteristics of heat sources and clouds over Eastern China and the Tibetan Plateau in Boreal Summer[J]. J Climate, 28:7279-7296, 8345-8358. DOI:10.1175/JCLI-D-14-00859.1.
[3]Chen J, Wu X, Yin Y, et al, 2017. Characteristics of cloud systems over the Tibetan Plateau and East China during Boreal Summer[J]. J Climate, 30(9):3117-3137. DOI:10.1175/JCLI-D-16-0169.1.
[4]Flohn H, 1968. Contribution to a meteorology of the Tibetan High lands[D]. Atmos Sci Paper. Colorado State Univ: Fort Collins.
[5]Hu L, Deng D F, Xu X D, et al, 2017. The regional differences of Tibetan convective systems in boreal summer[J]. J Geophys Res Atmos, 122:7289-7299. DOI:10.1002/2017JD026681.
[6]Maddox R A, 1980. Mesoscale convective complexes[J]. Bull Amer Meteor Soc, 61:1374-1387.
[7]Maddox R A, 1981. The structure and life-cycle of midlatitude mesoscale convective complexes[J]. Atmos Sci, 336.
[8]Qie X S, Wu X K, Yuan T, et al, 2014. Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian Monsoon Region Based on TRMM Data[J]. J Climate, 27:6612-6626. DOI:10.1175/JCLI-D-14-00076.1.
[9]Simmons A J, Uppala S M, Dee D, et al, 2007. ERA-Interim:New ECMWF reanalysis products from 1989 onwards[J]. ECMWF Newsletter, 110:25-35. DOI:ECMWFNewsletter n. 110.
[10]Sugimoto S, Ueno K, 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts[J]. J Geophys Res, 115, D16105. DOI:10.1029/2009JD013609.
[11]Taniguchi K, Koike T, 2008. Seasonal variation of cloud activity and atmospheric profiles over the eastern part of the Tibetan Plateau[J]. J Geophys Res, 113, D10104. DOI:10.1029/2007JD009321.
[12]Xu X, Zhao T, Lu C, 2014. An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau[J]. Atmos Chem Phys, 14, 18255-18275. DOI:10.5194/acp-14-11287-2014.
[13]Chen L X, Liu J P, Song Y K, et al, 1999. On the diurnal variation of convection over Qinghai-Xizang Plateau during summer as related from meteorological satellite data[J]. Acta Meteor Sinica, 57(5):549-560.<br/>陈隆勋, 宋玉宽, 刘骥平, 等, 1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 57(5):549-560.
[14]Chen Y R, Li Y Q, 2013. Characteristics of mesoscale connective system and its effects on short-time severe rainfall in Sichuan Basin During 21-22 July 2012[J]. Meteor Mon, 39(7):848-860. DOI:10.7519/j.issn. 1000-0526.2013.07.006.<br/>陈永仁, 李跃清, 2013. "12·7·22"四川暴雨的MCS特征及对短时强降雨的影响[J].气象, 39(7):848-860.
[15]Shan Y, Lin H, Fu W C, et al, 2003. The features of MCS during its initiation over Tibetan Plateau in summer[J]. J Trop Meteor, 19(1):61-66. DOI:10.16032/j.issn. 1004-4965.2003.01.008.<br/>单寅, 林珲, 付慰慈, 等, 2003.夏季青藏高原上中尺度对流系统初生阶段特征[J].热带气象学报, 19(1):61-66.
[16]Duan X, Zhang X N, Xu M L, 2004. Spatial and temporal distributions of mesoscale convective systems in Yunnan and it's periphery areas[J]. Acta Meteor Sinica, 62(2):243-251.<br/>段旭, 张秀年, 许美玲, 2004.云南及其周边地区中尺度对流系统时空分布特征[J].气象学报, 62(2):243-251.
[17]Fang Z B, Wu L X, Lin H, et al, 2004. Correlation analysis of the factors of MCSs movement and promulgation with focus on spatial data eploration[J]. J Trop Meteor, 20(5):600-604. DOI:10.16032/j.issn. 1004-4965.2004.05.017.<br/>方兆宝, 吴立新, 林珲, 等, 2004.面向空间数据挖掘的MCSs移动和传播影响因素分析[J].热带气象学报, 20(5):600-604.
[18]Gao W L, Yu S H, 2018. The case study in causes and environmental fields analysis of departure plateau vortex accompanying with induced southwest vortex[J]. Plateau Meteor, 37(1):54-67. DOI:10.7522/j.issn. 1000-0534.2017.00020.<br/>高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1):54-67.
[19]Gong Y F, Ji L R, Duan T Y, 2004. Precipitation character of rainy season of Qinghai-Xizang Plateau and onset over east Asia monsoon[J]. Plateau Meteor, 23(3):313-322. DOI:10.7522/j.issn. 1000-0534(2004)03-0313-10.<br/>巩远发, 纪立人, 段廷扬, 2004.青藏高原雨季的降水特征与东亚夏季风爆发[J].高原气象, 23(3):313-322.
[20]Guo Z Y, Lin H, Jiang J X, et al, 2003. Mining eastward-moving MCSs features over the Tibetan Platean[J]. Geo-information Sci, 1:5-10.<br/>过仲阳, 林珲, 江吉喜, 等, 2003.青藏高原上中尺度对流系统东移传播成因[J].地球信息科技, 1:5-10.
[21]Hou J Z, Sun W, Du J W, 2005. Analyses on circulation and dynamic features of a MCC on the side of northeast Qinghai-Xizang Plateau[J]. Plateau Meteor, 24(5):805-810. DOI:10.7522/j.issn. 1000-0534(2005)05-0805-06.<br/>侯建忠, 孙伟, 杜继稳, 2005.青藏高原东北侧一次MCC的环境流场及动力分析[J].高原气象, 24(5):805-810.
[22]Hu L, Li Y D, Fu R, et al, 2008. The relationship between mobile mesoscale convective systems over Tibetan Plateau and the rainfall over eastern China in summer[J]. Plateau Meteor, 27(2):301-308. DOI:10.7522/j.issn. 1000-0543(2008)02-0301-09.<br/>胡亮, 李耀东, 付容, 等, 2008.夏季青藏高原移动性对流系统与中国东部降水的相关关系[J].高原气象, 27(2):301-308.
[23]Hu M L, You Q L, Lin H B, 2015. Comparative analyses of geopotential height and wind field from multiple reanalysis data over the Tibetan plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1229-1244. DOI:10.7522/j.issn. 1000-0240.2015.0137.<br/>胡梦玲, 游庆龙, 林厚博, 2015.青藏高原地区多套位势高度和风场再分析资料的对比分析[J].冰川冻土, 37(5):1229-1244.
[24]Jiang J X, Fan M Z, 2002. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer[J]. Chinese J Atmos Sci, 26(2):263-270.<br/>江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学, 26(2):263-270.
[25]Jiang J X, Xiang X K, Fan M Z, 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer[J]. Quart J Appl Meteor, 7(4):473-478.<br/>江吉喜, 项续康, 范梅珠, 1996.青藏高原夏季中尺度强对流系统的时空分布[J].应用气象学报, 7(4):473-478.
[26]Jing W Q, Cui Y Y, Liu R X, et al, 2017. Quantitative study on water vapor pumping over Qinghai-Tibetan Plateau and water vapor paths influencing summer precipitation in the Middle and Lower Reach of the Yangtze River[J]. Plateau Meteor, 36(4):900-911. DOI:10.7522/j.issn. 1000-0534.2016.00084.<br/>敬文琪, 崔园园, 刘瑞霞, 等, 2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象, 36(4):900-911.
[27]Liang L, Li Y Q, Hu H R, et al, 2013. Numerical study of influence of sensible heat anomalies in summer over Qinghai-Xizang Plateau on rainfall in Sichuan-Chongqing Regions[J]. Plateau Meteor, 32(6):1538-1545. DOI:10.7522/j.issn. 1000-0534.2013.00028.<br/>梁玲, 李跃清, 胡豪然, 等, 2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象, 32(6):1538-1545.
[28]Lin H, Jiang J X, Yang Y B, et al, 2006. Spatial-temporal evolvement trends of mesoscale convective systems over Qinghai-Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 31(7):576-581. DOI:10.3969/j.issn. 1671-8860.2006.07.004.<br/>林珲, 江吉喜, 杨育彬, 等, 2006.青藏高原中尺度对流系统的时空演变特征及规律[J].武汉大学学报, 31(7):576-581.
[29]Liu Jianjun, Chen Baode, 2017. Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from CloudSat observation[J]. Plateau Meteoro, 36(3):632-642. DOI:10.7522/j.issn. 1000-0534.2017.00028.<br/>刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36(3):632-642.
[30]Lu N M, Fan J L, Liu J, et al, 2013. The potential satellite applications in the atmospheric sciences study on the Tibetan Plateau[J]. Adv Meteor Sci Technol, 3(3):29-33. DOI:10.3969/j.issn. 2095-1973.2013.03.004.<br/>卢乃锰, 范锦龙, 刘健, 等, 2013.卫星遥感在青藏高原大气科学研究中的应用前景[J].气象科技进展:英文版, 3(3):29-33.
[31]Luan Lan, Meng Xianhong, Lü Shihua, et al, 2017. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteoro, 36(2):283-293. DOI:10.7522/j.issn. 1000-0534.2016.00086.<br/>栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2):283-293.
[32]Pan X, Fu Y F, 2015. Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(5):1191-1203. DOI:10.7522/j.issn. 1000-0534.2014.00112.<br/>潘晓, 傅云飞, 2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].髙原气象, 34(5):1191-1203.
[33]Qin Q C, Shen X S, 2015. An estimate of surface pressure drag of the Tibetan Plateau and its characteristic analysis[J]. Acta Meteor Sinica, 73(1):93-109. DOI:10.11676/qxxb2014.066.<br/>秦庆昌, 沈学顺, 2015.青藏高原地表气压拖曳的估算及其特征分析[J].气象学报, 73(1):93-109.
[34]Su J Y, 2006. The study on the environmental physical field affecting the movement and the propagation of mesoscale convective system[D]. Shanghai: East China Normal University.<br/>苏君毅, 2006.引起中尺度对流系统移动传播的环境场研究[D].上海: 华东师范大学.
[35]Sun J H, Li J, Shen X Y, et al, 2015. Mesoscale system study of extreme rainfall over Sichuan Basin in july 2013[J]. Meteor Month, 41(5):533-543. DOI:10.7519/j.issn. 1000-0526.2015.05.002.<br/>孙建华, 李娟, 沈新勇, 等, 2015.2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J].气象, 41(5):533-543.
[36]Wang X, Li Y Q, Yu S H, et al, 2009. Statistical study on the plateau low vortex activities[J]. Plateau Meteor, 28(1):64-71.<br/>王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1):64-71.
[37]Xie X R, You Q L, Bao Y T, et al, 2018. The connection between the precipitation and water vapor transport over Qinhai-Tibetan Plateau in summer based on the multiple datasets[J]. Plateau Meteor, 37(1):78-92. DOI:10.7522/j.issn. 1000-0534.2017.00030.<br/>谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1):78-92.
[38]Xu W J, Zhang Y C, 2017. Numerical study on the feedback between latent heating and convection in a Qinghai-Tibetan Plateau vortex[J]. Plateau Meteor, 36(3):763-775. DOI:10.7522/j.issn. 1000-0534.2016.00061.<br/>许威杰, 张耀存, 2017.凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J].高原气象, 36(3):763-775.
[39]Xu X F, 2017. A study on the rainstorm in the Yangtze River Basin caused by the eastward migration of the Qinghai Tibet Plateau in the summer[A]. The changes of the Tibetan Plateau land-atmosphere coupled system and its effects on global climate[C].<br/>许小峰, 2017.夏季青藏高原东移云团引发长江流域暴雨的研究[A].青藏高原地-气耦合系统变化及其全球气候效应2017青藏高原前沿科学研讨会文集[C].
[40]Xue C F, Hou J Z, Chen X T, et al, 2017. Characteristics analysis of MCC in the Northeast Side of Tibetan Plateau[J]. J Arid Meteor, 35(2):214-224. DOI:10.11755/j.issn. 1006-7639(2017)-02-0214.<br/>薛春芳, 侯建忠, 陈小婷, 2017.青藏高原东北侧MCC特征分析[J].干旱气象, 35(2):214-224.
[41]Xun X Y, Hu Z Y, Cui G F, et al, 2015. Seasonal variations of the pressure systems in surface layer and northern regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 37(2):360-368. DOI:10.7522/j.issn. 1000-0240.2015.0039.<br/>荀学义, 胡泽勇, 崔桂凤, 等, 2015.青藏高原近地层及北侧气压系统的季节性振荡变化[J].冰川冻土, 37(2):360-368.
[42]Yang B Y, Wu X J, Guo Z, 2017. The characteristics of cloud properties in deep convective clouds across China with the CloudSat Dataset[J]. Plateau Meteor, 36(6):1655-1664. DOI:10.7522/j.issn. 1000-0534.2017.00006.<br/>杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象, 36(6):1655-1664.
[43]Yu S H, Gao W L, Peng J, 2012. Statistical analysis on influence of Qinghai-Xizang Plateau vortex activity on precipitation in China[J]. Plateau Meteor, 31(3):592-604. DOI:10.7522/j.issn. 1000-0543(2012)03-0592-13.<br/>郁淑华, 高文良, 彭骏, 2012.青藏高原低涡活动对降水影响的统计分析[J].高原气象, 31(3):592-604.
[44]Zhang S L, Tao S Y, Zhang Q Y, et al, 2002. Multi-scale conditions of torrential rain in the middle and lower reaches of the Yangtze river[J]. Sci Bull, 47(6):467-473.<br/>张顺利, 陶诗言, 张庆云, 等, 2002.长江中下游致洪暴雨的多尺度条件[J].科学通报, 47(6):467-473.
[45]Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J]. Plateau Meteor, 36(1):13-23. DOI:10.7522/j.issn. 1000-0534.2016.00028.<br/>张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23.
[46]Zhang N D, Qian Z A, Luo S W, 1982. The monthly mean atmospheric heating field and variations of circulation in may-july over east Asia[J]. Plateau Meteor, 2(1):35-42.<br/>章凝丹, 钱正安, 罗四维, 1982.东亚地区5-7月平均大气加热场和月平均环流变化[J].高原气象, 2(1):35-42.
[47]Zhang N D, Yao H, 1983. A study of the beginning and ending of rainy season over QingZang Plateau[J]. Plateau Meteor, 3(1):50-59.<br/>章凝丹, 姚辉, 1983.青藏高原雨季起讫的研究[J].高原气象, 3(1):50-59.
[48]Zhao Y F, Wang D H, Yin J F, 2014. A study of cloud microphysical characteristics over the Tibetan Plateau using CloudSat data[J]. J Trop Meteor, 30(2):239-248. DOI:10.3969/j.issn. 1004-4965.2014.02.005.<br/>赵艳风, 王东海, 尹金方, 2014.基于CloudSat资料的青藏高原地区云微物理特征分析[J].热带气象学报, 30(2):239-248.
[49]Zhuo G, Xu X D, Chen L S, 2002. Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau[J]. J Appl Meteor Sci, 13(4):448-456.<br/>卓嘎, 徐样德, 陈联寿, 2002.青藏高原对流云团东移发展的不稳定特征[J].应用气象学报, 13(4):448-456.