论文

湖泊和上风向地形对纳木错地区秋季降水影响

  • 许洁 ,
  • 马耀明 ,
  • 孙方林 ,
  • 马伟强
展开
  • 中国科学院寒旱区陆面过程与气候变化重点试验室, 中国科学院西北生态环境资源研究院, 甘肃 兰州 730000;中国科学院大学, 北京 100049;中国科学院青藏高原环境变化与地表过程重点试验室, 中国科学院青藏高原研究所, 北京 100101;中国科学院青藏高原地球科学卓越创新中心, 北京 100101

收稿日期: 2018-03-09

  网络出版日期: 2018-12-28

基金资助

中国科学院战略性先导科技专项(XDA20060101);国家自然科学基金项目(41661144043,41005010);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC019)

Analysis of Effects of Lake and Upstream Orography on the Precipitation in Fall over Nam Co Area

  • XU Jie ,
  • MA Yaoming ,
  • SUN Fanglin ,
  • MA Weiqiang
Expand
  • Key Laboratory of Land-surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Tibetan Environment Change and Land Surface Process. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China

Received date: 2018-03-09

  Online published: 2018-12-28

摘要

首先利用中国区域地面气象要素数据集(CMFD)分析了1992-2015年纳木错地区月平均降水分布,发现湖泊效应导致的下风向降水在10-11月较为明显。其次根据中国科学院纳木错多圈层综合观测研究站自动气象站2 m的风速和气温的数据,分析了2005-2015年焚风累积发生次数的月分布特征,发现12月焚风发生几率最大,且10月是秋季中发生焚风现象次数最多的月份的结果。再者,运用WRF模型对纳木错地区10月份降水进行了模拟,发现在已有大气环流背景条件下,纳木错地区秋季降水受到湖泊存在的影响比上游地形影响显著。有、无湖模拟试验表明,纳木错地区湖泊的存在会使周边地区尤其是湖泊下风向降水增多,影响范围可达100 km。上风向较高地形会使整个区域降水小幅增加,上风向地形导致的焚风效应对纳木错地区降水的影响较弱。

本文引用格式

许洁 , 马耀明 , 孙方林 , 马伟强 . 湖泊和上风向地形对纳木错地区秋季降水影响[J]. 高原气象, 2018 , 37(6) : 1535 -1543 . DOI: 10.7522/j.issn.1000-0534.2018.00054

Abstract

This paper analyzed the distribution of monthly averaged precipitation from 1992 to 2015 around Nam Co area by using CMFD (China meteorological forcing data) and the frequency of foehn from 1995 to 2015 by using wind and air temperature data from Nam Co station(Nam Co Station for Multisphere Observation and Research, Chinese Academy of Sciences). The results showed that the spatial lake-effect precipitation is most significant in fall, and foehn is the most frequent in December. And in October, the frequency of foehn is the most in fall. Then we simulated precipitation over Nam Co area in October using WRF. We found that under the background of air circulation, lake can affect the precipitation over Nam Co area more significantly than upstream orography. Comparing no lake experiment with control experiment, we can conclude that the exist of Nam Co lake can make surrounding area, especially downstream area, more precipitation and the effect distance can be 100 km. Upstream orography can enhance precipitation but the effect is little, and foehn has little effect on the precipitation in areas downstream of the lake.

参考文献

[1]Alcott T I, Steenburgh W J, 2013. Orographic influences on a Great Salt Lake-Effect snowstorm[J]. Mon Wea Rev, 141(7):2432-2450.
[2]Dee D P, Uppala S, 2009. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis[J]. Quart J Roy Meteor Soc, 135(644):1830-1841.
[3]Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-interim reanalysis:configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597.
[4]Gao Y C, Liu M F, 2013. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 17(2):837-849.
[5]Gerken T, Biermann T, Babel W, et al, 2013. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J]. Theor Appl Climat, 117(1-2):149-167.
[6]Gu H, Jin J, Wu Y, et al, 2015. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J]. Climat Change, 129(3-4):471-483.
[7]Gu H, Ma Z, Li M, 2016. Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China[J]. J Geophys Res Atmos, 121(15).
[8]Hostetler S W, Bartlein P J, 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon[J]. Water Res Res, 26(10):2603-2612.
[9]Lei Y, Yao T, Bird B W, et al, 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s:Characterization and attribution[J]. J Hydrology, 483(3):61-67.
[10]Li M, Ma Y, Hu Z, et al, 2009. Snow distribution over the Namco lake area of the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 13(11):2023-2030.
[11]Maussion F, Scherer D, Finkelnburg R, et al, 2011. WRF simulation of a precipitation event over the Tibetan Plateau, China-an assessment using remote sensing and ground observations[J]. Hydrology and Earth System Sciences, 15(6):1795-1817.
[12]Rasmussen R, Liu C, Ikeda K, et al, 2011. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado:A process study of current and warmer climate[J]. J Climate, 24(12):3015-3048.
[13]Subin Z M, Riley W J, Mironov D, 2012. An improved lake model for climate simulations:Model structure, evaluation, and sensitivity analyses in CESM1[J]. J Adv Model Earth Syst, 4(1):2001.
[14]Wilson J W, 1977. Effect of Lake Ontario on Precipitation[J]. Mon Wea Rev, 105(2):207-214.
[15]Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 112(1):79-91.
[16]Zhao L, Jin J, Wang S Y, et al, 2012. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. J Geophys Res Atmos, 117, D09102.
[17]Zhang G, Yao T, Xie H, et al, 2014. Lakes' state and abundance across the Tibetan Plateau[J]. Science Bull, 59(24):3010-3021.
[18]Zhang G, Xie H, Kang S, et al, 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sens Environ, 115(7):1733-1742.
[19]Fang Nan, Yang Kun, La Zhu, et al, 2017. Research on the application of WRF-lake Modeling at Nam Co Lake on the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(3):610-618.<br/>方楠, 阳坤, 拉珠, 等, 2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3):610-618.
[20]db. He Jie, Yang Kun, 2011. China meteorological forcing dataset[DS]. The cold and arid regions science data center at Lanzhou. doi: <a href="http://dx.doi.org/10.3972/westdc.002.2014.db" target="_blank">10.3972/westdc.002.2014.db</a>.<br/>何杰, 阳坤, 2011.中国区域高时空分辨率地面气象要素驱动数据集[DS].寒区旱区科学数据中心. doi: <a href="http://dx.doi.org/10.3972/westdc.002.2014" target="_blank">10.3972/westdc.002.2014</a>.
[21]Hang Lei, Wang Junbo, Zhu Liping, et al, 2015. Water temperature anc characteristics of thermal stratification in Nam Co, Tibet[J]. Journal of Lake Sciences, 27(4):711-718.<br/>黄磊, 王君波, 朱立平, 等, 2015.纳木错水温变化及热力学分层特征初步研究[J].湖泊科学, 27(4):711-718.
[22]Li Zhaoguo, Lü Shihua, Wen Lijuan, et al, 2016. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring Lake Basin[J]. Plateau Meteorology, 35(5):1200-1211. DOI:10.7522/j.issn.1000-0534.2015.00076.<br/>李照国, 吕世华, 文丽娟, 等, 2016.一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J].高原气象, 35(5):1200-1211.
[23]Qu Bin, Kang Shichang, Chen Feng, et al, 2012. Lake ice and its effect factors in the Nam Co Basin, Tibetan Plateau[J]. Adv Climat Change Res, 8(5):327-333.<br/>曲斌, 康世昌, 陈锋, 等, 2012.2006-2011年西藏纳木错湖冰状况及其影响因素分析[J].气候变化研究进展, 8(5):327-333.
[24]Wang Junbo, Peng Ping, Ma Qingfeng, et al, 2010. Modern limnological features of Tangra Yumco and Zhari Namco, Tibetan Plateau[J]. J Lake Sci, 22(4):629-632.<br/>王君波, 彭萍, 马庆峰, 等, 2010.西藏当惹雍错和扎日南木错现代湖泊基本特征[J].湖泊科学, 22(4):629-632.
[25]Wang Zongmin, Ding Yihui, Zhang Yingxin, et al, 2012. Feature and mechanism of the foehn weather on east slope Taihang Mountains Ⅰ:Statistic feature[J]. Plateau Meteor, 31(2):547-554.<br/>王宗敏, 丁一汇, 张迎新, 等, 2012.太行山东麓焚风天气的统计特征和机理分析Ⅰ:统计特征[J].高原气象, 31(2):547-554.
[26]Zhao S L, Wang R K, 1993. The foehn in the middle range of Taihang Mountain[J]. Meteor Mon, 19(2):3-6.<br/>赵世林, 王荣科, 1993.太行山中段的焚风[J].气象, 19(2):3-6.
文章导航

/