[1]Bollasina M A, Ming Y, Ramaswamy V, 2011. Anthropogenic aerosols and the weakening of the South Asian summer monsoon[J]. Science, 334(6055):502-505. DOI:10.1126/science. 1204994.
[2]Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597. DOI:10.1002/qj. 828.
[3]Ding Y H, Sun Y, Wang Z Y, et al, 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part Ⅱ:Possible causes[J]. Int J Climatol, 29(13):1926-1944. DOI:10.1002/joc. 1759.
[4]ECMWF, 2016. IFS DOCUMENTATION-Cy41r2 Operational implementation 8 March 2016. Part Ⅳ: physical processes[EB/OL]. 94-95. <a href="https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes" target="_blank">https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes</a>.
[5]Jiang D B, Wang H J, 2005. Natural interdecadal weakening of East Asian summer monsoon in the late 20th century[J]. Chinese Science Bulletin, 50(17):1923-1929. DOI:10.1360/982005-36.
[6]Li J L F, Waliser D E, Chen W T, et al, 2012. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data[J]. J Geophys Res Atmos, 117(D16):16105. DOI:10.1029/2012JD017640.
[7]Li Y, Gu H, 2006. Relationship between middle stratiform clouds andlarge scale circulation over eastern China[J]. Geophys Res Lett, 330(9):881. DOI:10.1029/2005GL02 5615.
[8]Lin B, Patrick M, 2003. Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment[J]. J Geophys Res Atmos, 108(D14), 1093-1100. DOI:10.1029/2002JD002851.
[9]Shupe M D, Intrieri J M, 2004. Cloud radiative forcing of the Arctic surface:The influence of cloud properties, surface albedo, and solar zenith angle[J]. J Climate, 17(3):616-628. DOI:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.
[10]Somerville R C J, Remer L A, 1984. Cloud optical thickness feedbacks in the CO2 climateproble[J]. J Geophys Res, 89(D6):9668-9672. DOI:10.1029/JD089iD06p09668.
[11]Bai L, Wang W X, Yao Y N, et al, 2013. Reliability of NCEP/NCAR and ERA-Interim reanalysis data on Tianshan mountainous area[J]. Desert and Oasis Meteorology, 7(3):51-56.<br/>白磊, 王维霞, 姚亚楠, 等, 2013. ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J].沙漠与绿洲气象, 7(3):51-56.
[12]Chen Y H, Deng J Y, Zhang P, et al, 2013. Vertical distribution of ice water content in clouds during heavy rains around Tianshan mountain[J]. Resources Science, 35(3):655-664. DOI:<a href="http://dx.doi.org/1007-7588(2013)03-0655-10" target=_blank>1007-7588(2013)03-0655-10</a>.<br/>陈勇航, 邓军英, 张萍, 等, 2013.中天山附近强降水过程中云冰水含量随高度变化特征[J].资源科学, 35(3):655-664.
[13]Cai M, 2013. Cloud water resources and precipitation efficiency evaluation over China[D]. Beijing: Chinese Academy of Meteorological Sciences, 1-124.<br/>蔡淼, 2013.中国空中云水资源和降水效率的评估研究[D].北京: 中国气象科学研究院, 1-124.
[14]Geng R, 2017. Comparison and analysis of atmospheric water cycle variables based on satellite and reanalysis data[D]. Hefei: University of Science and Technology of China, 1-52.<br/>耿蓉, 2017.基于卫星和再分析数据的大气水循环变量比较和分析[D].合肥: 中国科学技术大学, 1-52.
[15]Heng Z W, 2013. Analysis and evaluation of hydrometeors based on satellite and model datasets[D]. Hefei: University of Science and Technology of China, 1-103.<br/>衡志炜, 2013.基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D].合肥: 中国科学技术大学, 1-103.
[16]Li X Y, Guo X L, Zhu J, 2008. Climatic distribution features and trends of cloud water resources over China[J]. Chinese J Atmos Sci, 32(5):1094-1106. DOI:10.3878/j.issn. 1006-9895.2008.05.09.<br/>李兴宇, 郭学良, 朱江, 2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学, 32(5):1094-1106.
[17]Liu H L, Zhu W Q, Yi S H, et al, 2003. Climatic analysis of the cloud over China[J]. J Meteor, 61(4):466-473. DOI:10.11676/qxxb2003.04.<br/>刘洪利, 朱文琴, 宜树华, 等, 2003.中国地区云的气候特征分析[J].气象学报, 61(4):466-473.
[18]Pan L J, Zhang H F, Zhu W J, et al, 2013. Forecast performance verification of the ECMWF model over the Northeast Hemisphere[J]. Climatic Environ Res, 18(1):111-123. DOI:10.3878/j.issn. 1006-9585.2012.11097.<br/>潘留杰, 张宏芳, 朱伟军, 等, 2013. ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18(1):111-123.
[19]Pan L J, Zhang H F, Zhou Y Q, et al, 2015. Spatial-temporal distribution of summer cloud water resources over the Loess Plateau from 1979 to 2012[J]. Journal of Desert Research, 35(2):456-463. DOI:10.7522/j.issn. 1000-694X. 2014.00034.<br/>潘留杰, 张宏芳, 周毓荃, 等, 2015.1979-2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 35(2):456-463.
[20]Shi X L, Yang Q, Yao J Q, et al, 2016. The spatial distribution of water vapor and cloud water content over Tianshan mountains, China based on ERA-Interim dataset[J]. Desert Oasis Meteor, 10(2):50-56. DOI:10.3969/j.issn. 1002-0799.2016.02.008.<br/>石晓兰, 杨青, 姚俊强, 等, 2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象, 10(2):50-56.
[21]Sheng P X, Mao J T, Li J G, 2003. Atmospheric Physics[M]. Beijing:Peking University Press.<br/>盛裴轩, 毛节泰, 李建国, 2003.大气物理学[M].北京:北京大学出版社.
[22]Wang H, Wang J H, 2012. Sustainable utilization of China's water resources[J]. Journal of the Chinese Academy of Sciences, 27:352-357. DOI:10.3969/j.issn. 1000-3045.2012.03.014.<br/>王浩, 王建华, 2012.中国水资源与可持续发展[J].中国科学院院刊, 27:352-357.
[23]Wang X, Gong Y F, Cen S X, 2009. Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year[J]. Acta Geographica Sinica, 64(5):601-608.<br/>王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5):601-608.
[24]Wang Z Y, Ding Y H, 2009. Impacts of the long-term change of the summer Asian polar vortex on the circulation system and the water vapor transport in East Asia[J]. Chinese J Geophys, 52(1):20-29.<br/>王遵娅, 丁一汇, 2009.夏季亚洲极涡的长期变化对东亚环流和水汽收支的影响[J].地球物理学报, 52(1):20-29.
[25]Yang D S, Wang P C, 2012. Characteristics of vertical distribution of cloud water contents over China during summer[J]. Chinese J Atmos Sci, 36(1):89-101. DOI:10.3878/j.issn. 1006-9895.2012.01.08.<br/>杨大生, 王普才, 2012.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学, 36(1):89-101.
[26]Yao Z G, Yang C, Zhao Z L, et al, 2018. Study of the stratiform cloud liquid water path retrieval from the millimeter wave radar data[J]. Plateau Meteor, 37(1):223-233. DOI:10.7522/j.issn. 1000-0534.2016.00127.<br/>姚志刚, 杨超, 赵增亮, 等, 2018.毫米波雷达反演层状云液态水路径研究[J].高原气象, 37(1):223-233.
[27]Yu H, Zhang J, Liu S M, 2018. The variation of effective radiation in Qinghai-Tibetan Plateau based on the CERES satellite data[J]. Plateau Meteor, 37(1):106-122. DOI:10.7522/j.issn. 1000-0534.2017.00045.<br/>于涵, 张杰, 刘诗梦, 2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象, 37(1):106-122.
[28]Yang B Y, Wu X J, Guo Z, 2017. The characteristics of cloud properties in deep convective clouds across China with the CloudSat Dataset[J]. Plateau Meteor, 36(6):1655-1664. DOI:10.7522/j.issn. 1000-0534.2017.00006.<br/>杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象, 36(6):1655-1664.
[29]Zhao Q Y, Li D L, Wu H B, 2006. Analyses on surface air temperature changes in east part of Northwest China in last 40 years[J]. Plateau Meteor, 25(4):643-650. DOI:10.3321/j.issn:1000-053 4.2006.04.011.<br/>赵庆云, 李栋梁, 吴洪宝, 2006.西北区东部近40年地面气温变化的分析[J].高原气象, 25(4):643-650.