论文

基于ERA-Interim的中国云水量时空分布和变化趋势

  • 刘菊菊 ,
  • 游庆龙 ,
  • 周毓荃 ,
  • 马茜蓉 ,
  • 蔡淼
展开
  • 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;中国气象科学研究院, 北京 100081

收稿日期: 2018-02-12

  网络出版日期: 2018-12-28

基金资助

国家重点研发计划项目(2016YFA0601702);国家自然科学基金项目(41771069);江苏高校优势学科建设工程资助项目(PAPD)

Spatiotemporal Distribution and Trend of Cloud Water Content in China Based on ERA-Interim Reanalysis

  • LIU Juju ,
  • YOU Qinglong ,
  • ZHOU Yuquan ,
  • MA Qianrong ,
  • CAI Miao
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD); Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China;Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2018-02-12

  Online published: 2018-12-28

摘要

利用欧洲中期天气预报中心(ECMWF)发布的新一代全球分辨率ERA-Interim再分析数据,用九点平滑、一元线性回归法分析了1979-2016年中国云水量时空分布特征和变化趋势。结果表明:(1)中国云水含量和云液水含量大值区主要位于四川东部-湖南850~500 hPa,量值达0.015~0.045 g·kg-1,这一分布与该地区层状云的富集有关。云冰水含量大值区主要位于中东部地区(27°N-35°N,97°E-110°E)500~250 hPa,量值达0.006~0.025 g·kg-1。三者小值区均位于西北地区西部。(2)中国多年平均整层云水量无明显线性趋势。春季云水量呈略减少,秋、冬季呈略增加趋势,夏季无明显趋势。云水量有明显年际变化,夏季年际变化远小于其他季节;干旱区、半干旱区整层云液态水含量的年际变化大于湿润区,云冰水含量相反。云水量空间变化呈西增东减趋势。(3)云水量大值区对应水汽输送辐合和低层上升运动,且对流层中低层水汽通量散度可在一定程度上表征云水含量。从而为认识和理解气候变化对中国水资源的影响提供一定依据。

本文引用格式

刘菊菊 , 游庆龙 , 周毓荃 , 马茜蓉 , 蔡淼 . 基于ERA-Interim的中国云水量时空分布和变化趋势[J]. 高原气象, 2018 , 37(6) : 1590 -1604 . DOI: 10.7522/j.issn.1000-0534.2018.00059

Abstract

Based on the next-generation global resolution ERA-Interim reanalysis data released by the European Centre for Medium-Range Weather Forecasts (ECMWF), the spatial and temporal distribution characteristics of cloud water (The general designation of cloud water content, cloud liquid water content, and cloud ice water content) in China from 1979 to 2016 have been analyzed by applying the methods of nine-point smoothing and one-dimensional linear regression. The results were shown as follows:(1) Cloud liquid water content and cloud water content in China are mainly located in the eastern part of Sichuan-Hunan, located at 850~500 hPa in the vertical direction, with the amount of 0.015~0.045 g·kg-1. This distribution is closely related to the enrichment of stratus over the area. The large value of cloud ice water content is mainly located in the middle and eastern part of China (27°N-35°N, 97°E-110°E), located at 500~250 hPa in the vertical direction, with the amount of 0.006~0.025 g·kg-1. The small values are all located in the western part of the Northwest China. (2)There is no obvious annual trend of the vertical integral of cloud water in China. The seasonal average cloud water in spring is slightly decreased, and the cloud water is increased slightly in autumn and winter. There is no obvious cloud water trend in summer. In addition, cloud water content in China has obvious interannual variation characteristics, with smallest variation in summer. The interannual variability of cloud liquid water content in arid and semiarid regions is greater than that in wet regions. In contrast, the interannual variability of cloud ice water content in arid and semiarid regions is less than that in wet regions. The spatial variation of cloud water is increased in the west of China and decreased in the east of China. (3) The more cloud liquid water content and cloud ice water content are corresponded to stronger water vapor convergence and an uplift motion in the lower layer. This indicates that the water vapor flux divergence in the middle and lower troposphere can characterize the value of cloud water content. This study aims to provide a basis for understanding the impact of climate change on water resources in China.

参考文献

[1]Bollasina M A, Ming Y, Ramaswamy V, 2011. Anthropogenic aerosols and the weakening of the South Asian summer monsoon[J]. Science, 334(6055):502-505. DOI:10.1126/science. 1204994.
[2]Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597. DOI:10.1002/qj. 828.
[3]Ding Y H, Sun Y, Wang Z Y, et al, 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part Ⅱ:Possible causes[J]. Int J Climatol, 29(13):1926-1944. DOI:10.1002/joc. 1759.
[4]ECMWF, 2016. IFS DOCUMENTATION-Cy41r2 Operational implementation 8 March 2016. Part Ⅳ: physical processes[EB/OL]. 94-95. <a href="https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes" target="_blank">https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes</a>.
[5]Jiang D B, Wang H J, 2005. Natural interdecadal weakening of East Asian summer monsoon in the late 20th century[J]. Chinese Science Bulletin, 50(17):1923-1929. DOI:10.1360/982005-36.
[6]Li J L F, Waliser D E, Chen W T, et al, 2012. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data[J]. J Geophys Res Atmos, 117(D16):16105. DOI:10.1029/2012JD017640.
[7]Li Y, Gu H, 2006. Relationship between middle stratiform clouds andlarge scale circulation over eastern China[J]. Geophys Res Lett, 330(9):881. DOI:10.1029/2005GL02 5615.
[8]Lin B, Patrick M, 2003. Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment[J]. J Geophys Res Atmos, 108(D14), 1093-1100. DOI:10.1029/2002JD002851.
[9]Shupe M D, Intrieri J M, 2004. Cloud radiative forcing of the Arctic surface:The influence of cloud properties, surface albedo, and solar zenith angle[J]. J Climate, 17(3):616-628. DOI:10.1175/1520-0442(2004)017&lt;0616:CRFOTA&gt;2.0.CO;2.
[10]Somerville R C J, Remer L A, 1984. Cloud optical thickness feedbacks in the CO2 climateproble[J]. J Geophys Res, 89(D6):9668-9672. DOI:10.1029/JD089iD06p09668.
[11]Bai L, Wang W X, Yao Y N, et al, 2013. Reliability of NCEP/NCAR and ERA-Interim reanalysis data on Tianshan mountainous area[J]. Desert and Oasis Meteorology, 7(3):51-56.<br/>白磊, 王维霞, 姚亚楠, 等, 2013. ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J].沙漠与绿洲气象, 7(3):51-56.
[12]Chen Y H, Deng J Y, Zhang P, et al, 2013. Vertical distribution of ice water content in clouds during heavy rains around Tianshan mountain[J]. Resources Science, 35(3):655-664. DOI:<a href="http://dx.doi.org/1007-7588(2013)03-0655-10" target=_blank>1007-7588(2013)03-0655-10</a>.<br/>陈勇航, 邓军英, 张萍, 等, 2013.中天山附近强降水过程中云冰水含量随高度变化特征[J].资源科学, 35(3):655-664.
[13]Cai M, 2013. Cloud water resources and precipitation efficiency evaluation over China[D]. Beijing: Chinese Academy of Meteorological Sciences, 1-124.<br/>蔡淼, 2013.中国空中云水资源和降水效率的评估研究[D].北京: 中国气象科学研究院, 1-124.
[14]Geng R, 2017. Comparison and analysis of atmospheric water cycle variables based on satellite and reanalysis data[D]. Hefei: University of Science and Technology of China, 1-52.<br/>耿蓉, 2017.基于卫星和再分析数据的大气水循环变量比较和分析[D].合肥: 中国科学技术大学, 1-52.
[15]Heng Z W, 2013. Analysis and evaluation of hydrometeors based on satellite and model datasets[D]. Hefei: University of Science and Technology of China, 1-103.<br/>衡志炜, 2013.基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D].合肥: 中国科学技术大学, 1-103.
[16]Li X Y, Guo X L, Zhu J, 2008. Climatic distribution features and trends of cloud water resources over China[J]. Chinese J Atmos Sci, 32(5):1094-1106. DOI:10.3878/j.issn. 1006-9895.2008.05.09.<br/>李兴宇, 郭学良, 朱江, 2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学, 32(5):1094-1106.
[17]Liu H L, Zhu W Q, Yi S H, et al, 2003. Climatic analysis of the cloud over China[J]. J Meteor, 61(4):466-473. DOI:10.11676/qxxb2003.04.<br/>刘洪利, 朱文琴, 宜树华, 等, 2003.中国地区云的气候特征分析[J].气象学报, 61(4):466-473.
[18]Pan L J, Zhang H F, Zhu W J, et al, 2013. Forecast performance verification of the ECMWF model over the Northeast Hemisphere[J]. Climatic Environ Res, 18(1):111-123. DOI:10.3878/j.issn. 1006-9585.2012.11097.<br/>潘留杰, 张宏芳, 朱伟军, 等, 2013. ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18(1):111-123.
[19]Pan L J, Zhang H F, Zhou Y Q, et al, 2015. Spatial-temporal distribution of summer cloud water resources over the Loess Plateau from 1979 to 2012[J]. Journal of Desert Research, 35(2):456-463. DOI:10.7522/j.issn. 1000-694X. 2014.00034.<br/>潘留杰, 张宏芳, 周毓荃, 等, 2015.1979-2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 35(2):456-463.
[20]Shi X L, Yang Q, Yao J Q, et al, 2016. The spatial distribution of water vapor and cloud water content over Tianshan mountains, China based on ERA-Interim dataset[J]. Desert Oasis Meteor, 10(2):50-56. DOI:10.3969/j.issn. 1002-0799.2016.02.008.<br/>石晓兰, 杨青, 姚俊强, 等, 2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象, 10(2):50-56.
[21]Sheng P X, Mao J T, Li J G, 2003. Atmospheric Physics[M]. Beijing:Peking University Press.<br/>盛裴轩, 毛节泰, 李建国, 2003.大气物理学[M].北京:北京大学出版社.
[22]Wang H, Wang J H, 2012. Sustainable utilization of China's water resources[J]. Journal of the Chinese Academy of Sciences, 27:352-357. DOI:10.3969/j.issn. 1000-3045.2012.03.014.<br/>王浩, 王建华, 2012.中国水资源与可持续发展[J].中国科学院院刊, 27:352-357.
[23]Wang X, Gong Y F, Cen S X, 2009. Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year[J]. Acta Geographica Sinica, 64(5):601-608.<br/>王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5):601-608.
[24]Wang Z Y, Ding Y H, 2009. Impacts of the long-term change of the summer Asian polar vortex on the circulation system and the water vapor transport in East Asia[J]. Chinese J Geophys, 52(1):20-29.<br/>王遵娅, 丁一汇, 2009.夏季亚洲极涡的长期变化对东亚环流和水汽收支的影响[J].地球物理学报, 52(1):20-29.
[25]Yang D S, Wang P C, 2012. Characteristics of vertical distribution of cloud water contents over China during summer[J]. Chinese J Atmos Sci, 36(1):89-101. DOI:10.3878/j.issn. 1006-9895.2012.01.08.<br/>杨大生, 王普才, 2012.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学, 36(1):89-101.
[26]Yao Z G, Yang C, Zhao Z L, et al, 2018. Study of the stratiform cloud liquid water path retrieval from the millimeter wave radar data[J]. Plateau Meteor, 37(1):223-233. DOI:10.7522/j.issn. 1000-0534.2016.00127.<br/>姚志刚, 杨超, 赵增亮, 等, 2018.毫米波雷达反演层状云液态水路径研究[J].高原气象, 37(1):223-233.
[27]Yu H, Zhang J, Liu S M, 2018. The variation of effective radiation in Qinghai-Tibetan Plateau based on the CERES satellite data[J]. Plateau Meteor, 37(1):106-122. DOI:10.7522/j.issn. 1000-0534.2017.00045.<br/>于涵, 张杰, 刘诗梦, 2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象, 37(1):106-122.
[28]Yang B Y, Wu X J, Guo Z, 2017. The characteristics of cloud properties in deep convective clouds across China with the CloudSat Dataset[J]. Plateau Meteor, 36(6):1655-1664. DOI:10.7522/j.issn. 1000-0534.2017.00006.<br/>杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象, 36(6):1655-1664.
[29]Zhao Q Y, Li D L, Wu H B, 2006. Analyses on surface air temperature changes in east part of Northwest China in last 40 years[J]. Plateau Meteor, 25(4):643-650. DOI:10.3321/j.issn:1000-053 4.2006.04.011.<br/>赵庆云, 李栋梁, 吴洪宝, 2006.西北区东部近40年地面气温变化的分析[J].高原气象, 25(4):643-650.
文章导航

/