论文

一例伴随西南涡的入海高原涡持续活动成因分析

  • 肖玉华 ,
  • 郁淑华 ,
  • 高文良 ,
  • 肖递祥 ,
  • 肖红茹 ,
  • 师锐
展开
  • 中国气象局成都高原气象研究所, 四川 成都 610072;高原与盆地暴雨旱涝灾害四川省重点实验室, 四川 成都 610072;四川省气象台, 四川 成都 610072;雅安市气象局, 四川 雅安 625000

收稿日期: 2017-10-13

  网络出版日期: 2018-12-28

基金资助

国家自然科学基金项目(91332715,41275052);国家重点基础研究发展计划项目(973计划2012CB417202);中国气象局成都高原气象研究所高原气象开放实验室基金项目(LPM2010010)

Analysis of the Causes of one Sustained Enter-the-Sea Plateau Vortex Accompanied by Southwest Vortex

  • XIAO Yuhua ,
  • YU Shuhua ,
  • GAO Wenliang ,
  • XIAO Dixiang ,
  • XIAO Hongru ,
  • SHI Ri
Expand
  • The Chengdu Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, Sichuan, China;Provincial Key Laboratory of Rainstorm and Drought and flood Disasters in Plateau and Basin of Sichuan Provincial, Chengdu 610072, Sichuan, China;Sichuan Provincial Meteorological Observatory, China Meteorological AdministrationA, Chengdu 610072, Sichuan, China;Yaan City Meteorological Bureau, China Meteorological Administration, Yaan 625000, Sichuan, China

Received date: 2017-10-13

  Online published: 2018-12-28

摘要

利用NCEP/NCAR再分析资料、历史天气图与青藏高原低涡切变线年鉴,采用天气学分析和要素诊断方法,对2013年6月4-10日伴随西南涡的入海高原涡从位涡、涡度及非绝热加热角度进行了诊断,分析了高空大值位涡、大值涡度下传以及非绝热加热在高原涡各生命阶段里的作用,以及与西南涡相遇对高原涡维持发展的影响,一定程度揭示了高原涡能够东移入海、长时间持续发展的原因。结果表明,高空急流的位置及强度变化对高原涡东移、入海发展至关重要,此例高原涡是在高空急流引导下东移入海的,而急流上携带的大值位涡、大值涡度下传是高原涡能够持续活动、最终入海并在海上保持活力的动力来源,尤其是当急流断裂处形成低槽时,低槽内的高位涡和强涡度下传为高原涡提供了充足的能量,使得高原涡强烈发展,而西南涡与高原涡相遇、重叠更使高原涡"锦上添花",达到了鼎盛,一旦失去高空的支持,高原涡迅速衰减、消亡;西南涡则不然,即使没有高空位涡、涡度的支持,西南涡仍由于非绝热加热的作用而强盛发展;高原涡、西南涡各生命阶段的视热源差异分析显示,非绝热加热对高原涡、西南涡的生成都有重要的作用,且作用方式相同,但生成之后,非绝热加热对高原涡的影响甚微,而对西南涡,非绝热加热仍然至关重要,不仅决定着西南涡的生命史长度,也决定着西南涡发展的强度。

本文引用格式

肖玉华 , 郁淑华 , 高文良 , 肖递祥 , 肖红茹 , 师锐 . 一例伴随西南涡的入海高原涡持续活动成因分析[J]. 高原气象, 2018 , 37(6) : 1616 -1627 . DOI: 10.7522/j.issn.1000-0534.2018.00043

Abstract

Based on NCEP/NCAR reanalysis data, history synoptic chart and the Plateau Vortex and Shear Line Yearbook, by using synoptic analysis and diagnose method, an enter-the-sea Plateau Vortex (Qumalai vortex, named from its generation site) accompanied by a Southwest Vortex during 410 June 2013, was studied in terms of the vorticity, nonadiabatic heating and potential vorticity. In order to reveal the cause that why Qumalai Vortex can move eastward far away till onto the sea and sustain for 6 days, the function of downward spread of larger vorticity and potential vorticity from the upper air jet, nonadiabatic heating during the different life phases of Qumalai Vortex were studied, as well as the influence of encountering Southwest Vortex on Qumalai Vortex's maintenance and development. The results showed that the location and the intensity change of the upper air jet were of great importance for Qumalai Vortex to move eastward and maintain. Apart from leading Qumalai Vortex movement, as taking along larger vorticity and potential vorticity, the upper air jet provided Qumalai Vortex with vorticity and potential vorticity by way of downward spread, which gave support to Qumalai Vortex in energy continually. As Qumalai Vortex about to the sea, although the upper air jet just above Qumalai Vortex was disconnected, a trough was generated there. The downward spread of plentiful vorticity and potential vorticity in the trough into Qumalai Vortex enabled Qumalai Vortex to develop intensively, while encountering even overlapping with the Southwest Vortex made Qumalai Vortex stepping in a period of its great prosperity. Once Qumalai Vortex lost the support from the upper air, it decayed and died out soon. Unlike Qumalai Vortex, Southwest Vortex, even if without the aid of larger vorticity and potential vorticity from upper air, could still be strongly powerful and prosperous on account of nonadiabatic heating. Furthermore, the contrastive analysis of apparent heat source in their each life phase between Qumalai and Southwest Vortexes was conducted. The results indicated that over the first stage of formation, nonadiabatic heating was important for both Qumalai and Southwest Vortexes in the same way that heat was transported upward, resulting in the nonadiabatic heating profile of "bulging towards the right" which was very in favor of vorticity increase. Later, the function of nonadiabatic heating was little for Qumalai Vortex, but still crucial for Southwest Vortex. Nonadiabatic heating decided not only the length of Southwest Vortex life, but also the highest level of intensity.

参考文献

[1]Cheng X L, Li Y Q, Xu L, 2016. An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation[J]. Meteor Atmos Phys, 128(3):373-399
[2]Hideo T, 2003. Observational study on the initial formation process of the Mei-yu Frontal disturbance in the eastern foot of the Tibetan Plateau in middle-late June 1992[J]. J Meteor Soc Japan., 81(6):1303-1327.
[3]Tao S Y, Ding Y H, 1981. Observational of the influence of the Qinghai-Xizang (Tibet) Plateau on occurrence of heavy rain and severe convective strorm in china[J]. Bull Amer Meteor Soc, 62(1):23-30.
[4]Xiang S Y, Li Y Q, Li D, et al, 2013. An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data[J]. Meteor Atmos Phys, 122(1):33-45.
[5]Yu S H, Gao W L, Peng J, et al, 2014. Observational facts of sustained departure Plateau vortexes[J]. J Meteor Res, 28(2), 296-307.
[6]Yu S H, Gao W L, 2009. Large-scale conditions of Tibet Plateau vortex departure[J]. Sciences in Cold and Arid Regions, 1(6):559-569.
[7]Yu S H, Gao W L, Xiao D X, et al, 2016. Observational facts regarding the joint activities of the Southwest Vortex and Plateau Vortex after Its departure from the Tibetan Plateau[J]. Adv Atmos Sci, 33(1):34-46.
[8]Chen B, Gao W L, 2015. The causing storm rain in Southwest Sichuan Basin characteristic analysis of Tibetan Plateau Vortex[J]. Plateau Mount Meteor Res, 35(1):9-15.<br/>陈贝, 高文良, 2015.引发四川盆地西南地区暴雨的高原涡特征分析[J].高原山地气象研究, 35(1):9-15.
[9]Chen G, Li G P, 2011. Characteristics of the tangential flow field of the Tibetan Plateau vortices and associated waves[J]. Acta Meteor Sinica(in Chinese), 69(6):956-963.<br/>陈功, 李国平, 2011.夏季青藏高原低涡的切向流场及波动特征分析[J].气象学报, 69(6):956-963.
[10]Ding Y H, Ma X Q, 2007. Analysis isentropic potential vorticity for a strong cold wave in 2004/2005 winter[J]. Acta Meteor Sinica, 65(5):695-707.<br/>丁一汇, 马晓青, 2007.2004/2005年冬季强寒潮事件的等熵位涡分析[J].气象学报, 65(5):695-707.
[11]He G B, Gao W L, Tu N N, 2009a. The observational analysis of shear line and low vortex over the Tibetan Plateau in summer from 2000 to 2007[J]. Plateau Meteor, 28(3):549-555.<br/>何光碧, 高文良, 屠妮妮, 2009a. 2000-2007年夏季青藏高原低涡切变线的观测事实分析[J].高原气象, 28(3):549-555.
[12]He G B, Gao W L, Tu N N, 2009b. The dynamic diagnosis on easterwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes[J]. Acta Meteor. Sinica, 67(4):599-612.<br/>何光碧, 高文良, 屠妮妮, 2009b.两次高原低涡东移特征及发展机制动力诊断[J].气象学报, 67(4):599-612.
[13]Huang C H, Li G P, Niu J L, et al, 2011. Moist helicy analysis of Heavy rainstorm in Sichuan Basin induced by plateau vortex moving eastward[J]. Plateau Meteor, 30(6):1427-1434.<br/>黄楚惠, 李国平, 牛金龙, 等, 2011.一次高原低涡东移引发四川盆地强降水的湿螺旋度分析[J].高原气象, 30(6):1427-1434.
[14]Jaing Y R, He J H, Wen M, et al, 2009. Characteristic of a couple of vortexes on the east side of Tibetan Plateau from winter to spring and their impact on the weather and climate in China[J]. Plateau Meteor, 28(5):945-954.<br/>蒋艳蓉, 何金海, 温敏, 等, 2009.冬、春季青藏高原东侧涡旋对特征及其对我国天气气候的影响[J].高原气象, 28(5):945-954.
[15]Li C, Li Y Q, Jiang X W, 2017. Mechanism of long lifespan Sichuan Basin Vortex's activity influence the precipitation in Sichuan-Chongqing region on summer[J]. Plateau Meteor, 36(3):685-696. DOI:10.7522/j.issn. 1000-0534.2016.00064<br/>李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地涡活动对川渝季节性降水的影响[J], 高原气象, 36(3):685-696.
[16]Li G P, 2002. The Dynamic Meteorology Study of Tibetan Plateau[M](in Chinese). Beijing:China Meteorology Press, 22-23.<br/>李国平, 2002.青藏高原动力气象学[M].北京:气象出版社, 22-23.
[17]Li G P, Luo X P, Chen T, et al, 2011. Preliminary theoretical study of waves in the Tibetan Plateau Vortex[J]. Plateau Meteor, 30(3):553-558.<br/>李国平, 罗喜平, 陈婷, 等, 2011.高原低涡中涡旋波动特征的初步分析[J].高原气象, 30(3):553-558.
[18]Liu Y M, Wu G X, Liu H, et al, 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical high 3:Condensation heating and south asia high and western pacific subtropical high[J]. Acta Meteor Sinica, 57(5):525-538.<br/>刘屹岷, 吴国雄, 刘辉, 等, 1999.空间非均匀加热对副热带高压形成和变异的影响Ⅲ:凝结潜热加热与南亚高压及西太平洋副高[J].气象学报, 57(5):525-538.
[19]Luo S W, 1992. Study on some kinds of weather systems over and around the Qinghai-Xizang plateau[M]. Beijing: China Meteorology Press, 1-205.<br/>罗四维, 著, 1992.青藏高原及其邻近地区几类天气系统的研究[M].北京: 气象出版社, 1-205.
[20]Peng G, Li Y Q, Yu S H, et al, 2015. Tibetan Plateau Vortex and Shear LineYearbook in 2013[M]. Beijing:Science Press, 1-328.<br/>彭广, 李跃清, 郁淑华, 等, 2015.青藏高原低涡切变线年鉴(2013)[M].北京:科学出版社, 1-328.
[21]Song M H, Qian Z A, 2002. Impact of plateau and cold air on SHWP and rain belt summer in 1998 and 1991[J]. Plateau Meteor, 21(6):556-564.<br/>宋敏红, 钱正安, 2002.高原及冷空气对1998和1991年夏季西太副高及雨带的影响[J].高原气象, 21(6):556-564.
[22]Song W W, Li G P, Tang Q K, 2012. Numerical simulation of the effect of heating and water vapor on two cases of Plateau vortex[J]. Chinese J Atmos Sci, 36(1):117-129.<br/>宋雯雯, 李国平, 唐钱奎, 2012.加热和水汽对两例高原低涡影响的数值试验[J].大气科学, 36(1):117-129.
[23]Wang J Z, Ma S F, Ding Y H, 1996. Application of potential voracity theory to analysis of formative mechanism of torrential. Quarterly[J] J Appl Meteor, 7(1):19-27.<br/>王建中, 马淑芬, 丁一汇, 1996.位涡在暴雨成因分析中的应用[J].应用气象学报, 7 (1):19-27.
[24]Wang X, Li Y Q, Yu S H, et al, 2009. Statistical study on the plateau low vortex activities[J]. Plateau Meteor, 28(1):64-71.<br/>王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1):64-71.
[25]Wang Y, He L F, Dai K, et al, 2017. An ensemble sensitivity analysis of a heavy rainfall over Sichuan Basin under interaction between Plateau Vortex and Southwest Vortex[J]. Plateau Meteor, 36(5):1245-1256. DOI:10.7522/j.issn. 1000-0534.2016.00102<br/>王毅, 何立富, 代刊, 等, 2017.集合敏感性方法在高原涡和西南涡引发暴雨过程镇南关的应用[J].高原气象, 36(5):1245-1256.
[26]Wu G X, Liu Y M, Liu P, 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical high 1. scale analysis[J]. Acta Meteor Sinica, 57(3):257-263.<br/>吴国雄, 刘屹岷, 刘平, 1999.空间非均匀加热对副热带高压带形成和变异的影响Ⅰ:尺度分析[J].气象学报, 57(3):257-263.
[27]Xiao D X, Yu S H, Tu N N, 2016. Analysis of typical sustained plateau vortexes after departure[J]. Plateau Meteor, 35(1):43-54. DOI:10.7522/j.issn. 1000-0534.2015.00002.<br/>肖递祥, 郁淑华, 屠妮妮, 2016.高原低涡移出高原后持续活动的典型个例分析[J].高原气象, 35(1):43-54.
[28]Yu S H, 2002. Water vapor imagery of vortex miving process over Qinghai-Xizang Plateau[J]. Plateau Meteor, 21(2):199-204.<br/>郁淑华, 2002.高原低涡东移的水汽图象[J].高原气象, 21(2):199-204.
[29]Yu S H, Xiao Y H, Gao W L, et al, 2009a. Numerical tests on impact of Southwest airflow upon Tibetan Vortex Migration[J]. Plateau Mount Meteor Res, 26(3):1-7.<br/>郁淑华, 肖玉华, 高文良, 等, 2009a.南支气流对高原低涡移出高原影响的数值试验[J].高原山地气象研究, 26(3):1-7.
[30]Yu S H, Gao W L, 2010. The structure characteristics comparison analysis with two Tibetan Plateau Vortices in 1998[J]. Plateau Meteor, 29(6):1357-1368.<br/>郁淑华, 高文良, 2010.1998年青藏高原低涡移出与未移出高原的结构特征比较[J].高原气象, 29(6):594-604.
[31]Yu S H, Gao W L, 2016. Circulation features of sustained departure Qinghai-Xizang Plateau vortex at upper tropospheric level[J]. Plateau Meteor, 35(6):1441-1455. DOI:10.7522/j.issn. 1000-0534.2016.00026<br/>郁淑华, 高文良, 2016.高原涡移出高原后持续的对流层高层环流特征[J].高原气象, 35(6):1441-1455.
[32]Yu S H, Gao W L, Peng J, 2012. Statistical analysis on influence of Qinghai-Xizang Plateau vortex activity on precipatation in China[J]. Plateau Meteor, 31(3):592-604.<br/>郁淑华, 高文良, 彭骏, 2012.青藏高原低涡活动及对我国影响的统计分析[J].高原气象, 31(3):594-604.
[33]Yu S H, Gao W L, Xiao Y H, 2009b. Diagnosis of effect of Southwestlies on Tibetan Vortex moving East[J]. Plateau Mount Meteor Res, 29(2):1-8.<br/>郁淑华, 高文良, 肖玉华, 2009b.南支气流对高原低涡移出青藏高原影响的诊断分析.[J]高原山地气象研究, 26(2):1-8.
[34]Yuan J S, Shou S W, 2001. Potential vorticity analysis in clod air activities during the south China torrential rain in 1998[J]. Journal of Nanjing Institute of Meteorology, 24(1):92-98.<br/>袁佳双, 寿绍文, 2001.1998年华南大暴雨冷空气活动的位涡场分析[J].南京气象学院学报, 24(1):92-98.
[35]Zhang S L, Tao S Y, Zhang Q Y, et al, 2001. Meteorological and hydrological characteristics of sever flooding in China during the summer of 1998[J]. J Appl Meteor Sci, 12(4):442-457.<br/>张顺利, 陶诗言, 张庆云, 等, 2001.1998年夏季中国暴雨洪涝灾害的气象水文特征[J].应用气象学报, 12(4):442-457.
[36]Zheng Y J, Wu G X, Liu Y M, 2013. Dynamical and thermal prpblems in vortex development and movement. Part 1:A PV-Q view.[J] Acta Meteor Sinica, 71(2):185-197.<br/>郑永骏, 吴国雄, 刘屹岷, 2013.涡旋发展和移动的动力和热力问题Ⅰ:PV-Q观点[J].气象学报, 71(2):185-197.
文章导航

/