论文

两类春季极端低温的年代际特征与欧亚环流异常关系对比

  • 徐玮平 ,
  • 张杰 ,
  • 陈志恒
展开
  • 气象灾害预报预警与评估协同创新中心/气象灾害省部共建教育部重点实验室, 南京信息工程大学, 江苏 南京 210044

收稿日期: 2018-01-11

  网络出版日期: 2018-12-28

基金资助

国家重点研发计划项目(2016YFA0600702);国家自然科学基金重点项目(41630426)

Comparative Analysis of Abnormal Relationship between Two Types of Decadal Characteristics of Extreme Low Temperature in Spring and the Eurasian Circulation

  • XU Weiping ,
  • ZHANG Jie ,
  • CHEN Zhiheng
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-01-11

  Online published: 2018-12-28

摘要

利用中国北方501个观测站温度资料、ECMWF再分析资料及Hadley海温数据分析了华北地区春季极端低温的时空特征,并对20世纪80年代前后、21世纪两类年代际极端降温的大气环流异常特征进行对比。结果表明,21世纪极端降温的环流形势从北大西洋至欧亚大陆呈"准两波型"的结构,波长较长,稳定性较好,低温持续时间长,并且在中高纬度存在明显的波列结构;而20世纪80年代前后极端低温环流形势呈"三波型"结构,波长较短,稳定性较差,低温持续时间较短,且在中高纬度波列结构不明显。北大西洋海温在1997年有明显的转折。1997年以前格陵兰岛南面附近的北大西洋洋面能量向东频散,通过西西伯利亚关键区,激发欧亚型EU波列,加强了气旋式异常环流,有利于低温的维持和发展。可能是存在两个能量频散源地的原因,使得80年代的EU波列波长较21世纪偏短。而1997年以后格陵兰岛以东洋面为关键强迫源,能量向东频散,有利于EU的加强,贝加尔湖西南部槽加强,形成气旋式异常中心,有利于低温的维持。格陵兰岛东侧海温异常热力强迫,可激发出EU型遥相关,在其下游的欧洲大陆形成暖脊,脊向北加强,然后收缩与鄂霍茨克海高压脊直接形成大槽,致使华北地区上空气旋式异常加强,环流易稳定维持,从而使得华北地区温度加剧下降,易发生极端低温事件。该结果反映了华北地区极端低温的年代际特征及其两类极端低温环流形势异常的部分成因,从而为预测极端低温事件提取某些信号。

本文引用格式

徐玮平 , 张杰 , 陈志恒 . 两类春季极端低温的年代际特征与欧亚环流异常关系对比[J]. 高原气象, 2018 , 37(6) : 1655 -1670 . DOI: 10.7522/j.issn.1000-0534.2018.00058

Abstract

Based on daily temperature data from 501 stations in northern China, the reanalyze data from European Centre for Medium-Range Weather Forecasts (ECMWF) and the sea temperature data from Hadley Center (Hadley), this paper investigated the temporal and spatial characteristics of extreme low temperature in spring in North China and compared the characteristics of atmospheric abnormal circulation between the two types of decadal extreme low temperature in the around 1980s and the 21st century. The results indicated that the situation of extreme low temperature circulation in 21st century presents a "quasi-2-wave" structure from the North Atlantic to Eurasia, with longer wavelength, better stability, longer duration at low temperature, and obvious wave trains structure at mid-high latitudes; However, the extreme low temperature circulation in the around 1980s presents a "3-wave" structure, with shorter wavelength, poorer stability, shorter duration at low temperature, and less obvious wave trains structure at mid-high latitudes. The North Atlantic sea surface temperature has a significant turning point in 1997. Before 1997, the energy of the North Atlantic near the south of Greenland was propagated eastwards, and the Eurasian wave train (EU) was excited through the key West Siberia area. The cyclonic abnormal circulation was enhanced, which was conductive to the maintenance and development of low temperature. There may be two sources of energy dispersion reason, making the EU wavelength of the 1980s shorter than the 21st century. However, after 1997, the ocean surface east of Greenland became the key forcing source. The energy propagated to the east is in favor of EU strengthening. The trough in southwestern part of Lake Baikal was strengthened to form a cyclonic abnormal center, which was conductive to the maintenance of low temperature. On the eastern side of Greenland, the sea surface temperature anomalies thermal forcing can stimulate EU teleconnection, form warm ridges on the downstream Eurasian continent, strengthen to the north and then contract with the Okhotsk Sea ridge directly, resulting in a Cyclone anomaly to strengthen and the circulation prone to maintain stability, making the North China temperature drop, prone to extreme low temperature events. The results reflect the interdecadal characteristics of extreme low temperatures in North China and some causes of the abnormal of the two types of extreme low temperature circulation, to extract certain signal for predicting extreme low temperature events.

参考文献

[1]Alexander L V, Zhang X, Peterson T C, et al, 2005. Global observed changes in daily climate extremes of temperature and precipitation[J]. J Geophys Res Atmos, 111(D5):1042-1063.
[2]Beniston M, Stephenson D B, Christensen O B, et al, 2007. Future extreme events in European climate:an exploration of regional climate model projections[J]. Climatic Change, 81(1):71-95.
[3]Changnon S A, Pielke R A J, Changnon D, et al, 2000. Human factors explain the increased losses from weather and climate extremes[J]. Bull Amer Meteor Soc, 81(2000):437-442.
[4]Hoskins B J, Karoly D J, 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. J Atmos Sci, 38(6):1179-1196.
[5]IPCC, 2013. Summary for policymakers of climate change 2013:The physical science basis:Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press.
[6]Klein T A M G, K?nnen G P, 2003. Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99[J]. J Climate, 16(22):3665-3680.
[7]Li J, Yu R, Zhou T, et al, 2005. Why is there an early spring cooling shift downstream of the Tibetan Plateau?[J]. J Climate, 18(22):4660-4668.
[8]Mann H B, 1945. Nonparametric test against trend[J]. Econometrica, 13(3):245-259.
[9]Simmons A J, Wallace J M, Branstator G W, 1983. Barotropic wave propagation and instability and atmospheric teleconnection patterns[J]. J Atmos Sci, 40(6):1363-1392.
[10]Takaya K, Nakamura H, 1997. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow[J]. Geophys Res Letters, 24(23):2985-2988.
[11]Takaya K, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasi geostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 58(6):608-627.
[12]Vincent L, ?vaMekis, 2006. Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century[J]. Atmos-Ocean, 44(2):177-193.
[13]YanZ, Jones P D, Davies T D, et al, 2002. Trends of extreme temperatures in Europe and China based on daily observations[J]. Climat Change, 53(1-3):355-392.
[14]Yang S, Lau K M, Yoo S H, et al, 2004. Upstream subtropical signals preceding the Asian summer monsoon circulation[J]. J Climate, 17(21):4213-4229.
[15]Yang J, Ren C, Jiang Z, 2008. Characteristics of extreme temperature event and its response to regional warming in Northwest China in past 45 years[J]. Chinese Geogr Sci, 18(1):70-76.
[16]You Q, Kang S, Aguilar E, et al, 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J]. Climate Dyn, 36(11-12):2399-2417.
[17]Zhai P, Sun A, Ren F, et al, 1999. Changes of climate extremes in China[J]. Climat Change, 42(1):203-218.
[18]Zhang Q, Xu C Y, Zhang Z, et al, 2008. Climate change or variability? The case of Yellow river as indicated by extreme maximum and minimum air temperature during 1960-2004[J]. Theor and Appl Climatol, 93(1-2):35-43.
[19]Ding Y H, Wang Z Y, Song Y F, et al, 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Acta Meteor Sinica, 66(5):808-825.<br/>丁一汇, 王遵娅, 宋亚芳, 等, 2008.中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J].气象学报, 66(5):808-825.
[20]Gao H, Chen L J, Jia X L, et al, 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008:Ⅱ. Possible climatic causes[J]. Meteor Mon, 34(4):101-106.<br/>高辉, 陈丽娟, 贾小龙, 等, 2008.2008年1月我国大范围低温雨雪冰冻灾害分析Ⅱ.成因分析[J].气象, 34(4):101-106.
[21]Miao C S, Zhao Y, Wang J H, 2010. Numerical simulation of 080125 cold air, freezing rain and snow in Southern China[J]. Trans Atmos Sci, 33(1):25-33.<br/>苗春生, 赵瑜, 王坚红, 2010.080125南方低温雨雪冰冻天气持续降水的数值模拟[J].大气科学学报, 33(1):25-33.
[22]Lu C H, Wang R, Qin Y J, et al, 2012. Effect of stratospheric downward propagation on the large-scale snowfall of Northern Hemisphere in December 2009[J]. Trans Atmos Sci, 35(3):304-310.<br/>卢楚翰, 王蕊, 秦育婧, 等, 2012.平流层异常下传对2009年12月北半球大范围降雪过程的影响[J].大气科学学报35(3):304-310.
[23]Liu Y, Guo P W, Feng T, 2016. The relationship between winter persistent Abnormal low temperature in North China and atmospheric low-frequency oscillation activities[J]. Trans Atmos Sci, 39(3):370-380.<br/>刘樱, 郭品文, 冯涛, 2016.华北地区冬季持续性异常低温事件与大气低频振荡活动的关系[J].大气科学学报, 39(3):370-380.
[24]Liu Y Y, Chen W, 2012. Variability of the Eurasian teleconnection pattern in the Norhern Hemisphere winter and its influences on the climate in China[J]. Chinese J Atmos Sci, 36(2):423-432.<br/>刘毓赟, 陈文, 2012.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学, 36(2):423-432.
[25]Ma Z G, Fu C B, Ren X B, et al, 2003. Trend of annual extreme temperature and its relationship to regional warming in Northern China[J]. Acta Phys Sinica, 58(s1):11-20.<br/>马柱国, 符淙斌, 任小波, 等, 2003.中国北方年极端温度的变化趋势与区域增暖的联系[J].地理学报, 58(s1):11-20.
[26]Ren F M, Zhai P M, 1998. Study on changes of China's extreme temperatures during 1951-1990[J]. Chinese J Atmos Sci, 22(2):217-227.<br/>任福民, 翟盘茂, 1998.1951-1990年中国极端气温变化分析[J].大气科学, 22(2):217-227.
[27]Ren G Y, Feng G l, Yan Z W, 2010. Progresses in observation studies of climate extremes and changes in mainland China[J]. Climat Environ Res, 15(4):337-353.<br/>任国玉, 封国林, 严中伟, 2010.中国极端气候变化观测研究回顾与展望[J].气候与环境研究, 15(4):337-353.
[28]Shi C H, Cai W Y, Jin X, 2016. Modulation by transient waves of atmospheric longwave anomalies:Dy-namic mechanism of the super cold wave in South China in the extremely strong El Nino of 2015/2016[J]. Trans Atmos Sci, 39(6):827-834.<br/>施春华, 蔡雯昳, 金鑫, 2016.强厄尔尼诺事件下2016年1月中国南方超级寒潮的动力学机制:瞬变波对大气长波异常的调制[J].大气科学学报, 39(6):827-834.
[29]Tang G L, Ding Y H, Wang S W, et al, 2009. Comparative analysis of the time series of surface air temperature over China for the last 100 years[J]. Adv Climate Change Res, 5(2):71-78.<br/>唐国利, 丁一汇, 王绍武, 等, 2009.中国近百年温度曲线的对比分析[J].气候变化研究进展, 5(2):71-78.
[30]Tang H Y, Zhai P M, Wang Z Y, 2005. On change in mean maximum temperature, minimum temperature and diurnal range in China during 1951-2002[J]. Climat Environ Res, 10(4):728-735.<br/>唐红玉, 翟盘茂, 王振宇, 2005.1951-2002年中国平均最高、最低气温及日较差变化[J].气候与环境研究, 10(4):728-735.
[31]Wang H J, 2010. Preliminary progress of regional energy and water circulation in east Asia on China's extreme climate impact research[J]. Adv Earth Sci, 25(6):563-570.<br/>王会军, 2010.东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J].地球科学进展, 25(6):563-570.
[32]Wang Dai, You Qinglong, Jiang Zhihong, et al, 2016. Analysis of extreme temperature changes in China based on the homogeneity-adjusted data[J]. Plateau Meteor, 35(5):1352-1363. DOI:10.7522/j.issn. 1000-0534.2016.00019.<br/>王岱, 游庆龙, 江志红, 等, 2016.基于均一化资料的中国极端地面气温变化分析[J].高原气象, 35(5):1352-1363.
[33]Xiao Y Q, 2017. Relationship between Ural Blocking and the North Atlantic Oscillation and their influence on winter weather over China[J]. Plateau Meteor, 36(6):1499-1511. DOI:10.7522/j.issn. 1000-0534.2016.00109.<br/>肖贻青, 2017.乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J].高原气象, 36(6):1499-1511.
[34]Yan X D, Song Y, Huang C R, et al, 2017. Temporal and spatial characteristics of winter temperature in Guizhou and its relationships with ocean and atmosphere[J]. Plateau Meteor, 36(5):1336-1345. DOI:10.7522/j.issn. 1000-0534.2016.00122.<br/>严小冬, 宋燕, 黄晨然, 等, 2017.贵州省冬季气温的时空特征及其与海气的关系[J].高原气象, 36(5):1336-1345.
[35]Yang J H, Jing Z H, Wei F, et al, 2006. Variability of extreme high temperature and low temperature and their response to regional warming in northwest china in recent 45 years[J]. Arid land Geography(Chinese version), 29(5):625-631.<br/>杨金虎, 江志红, 魏锋, 等, 2006.近45 a来中国西北年极端高、低温的变化及对区域性增暖的响应[J].干旱区地理(汉文版), 29(5):625-631.
[36]Yang P, Hou W, Feng G L, 2008. Determining the threshold of extreme events with detrended fluctuation analysis[J]. Acta Phys Sinica, 57(8):5333-5342.<br/>杨萍, 侯威, 封国林, 2008.基于去趋势波动分析方法确定极端事件阈值[J].物理学报, 57(8):5333-5342.
[37]Yang X Q, Huang S S, 1993. On the mechanism of summertime atmospheric anomalies induced by external forcing[J]. Chinese J Atmos Sci, 17(6):697-702.<br/>杨修群, 黄士松, 1993.外强迫引起的夏季大气环流异常及其机制探讨[J].大气科学, 17(6):697-702.
[38]Yu X J, 2004. Temperatural and spacial variation features of extreme climate and the correlation between extreme climate and anormal circulation in Jilin Province[D]. Nanjing: Nanjing University of Information Science &amp; Technology, 1-66.<br/>于秀晶, 2004.吉林省极端气候的时空变化特征及其与环流异常的关系[D].南京: 南京信息工程大学, 1-66.
[39]Zhao Z C, Wang S W, Xu Y, et al, 2005. Attribution of the 20th century climate warming in China[J]. Climat Environ Res, 10(4):808-817.<br/>赵宗慈, 王绍武, 徐影, 等, 2005.近百年我国地表气温趋势变化的可能原因[J].气候与环境研究, 10(4):808-817.
[40]Zhou Y Q, Ren G Y, 2009. The effect of urbanization on maximum, minimum temperatures and daily temperature range in North China[J]. Plateau Meteor, 28(5):1158-1166.<br/>周雅清, 任国玉, 2009.城市化对华北地区最高、最低气温和日较差变化趋势的影响[J].高原气象, 28(5):1158-1166.
[41]Zhao L, Wei G H, Li S L, et al, 2009. Characteristics of climatic warming trend in Northernmost China[J]. Meteor Sci Technol, 37(2):171-174.<br/>赵玲, 魏光辉, 李树岭, 等, 2009.中国北极村气候变暖特征[J].气象科技, 37(2):171-174.
[42]Zhang F Y, Xu H M, 2011. Spatial temporal variations of spring extreme low temperature in Northeast China and its relationship with SSTA in Atlantic Ocean[J]. Trans Atmos Sci, 34(5):574-582.<br/>张霏燕, 徐海明, 2011.东北春季极端低温的变化特征及其与大西洋海温的关系[J].大气科学学报, 34(5):574-582.
[43]Zhang T, Gao Q J, Sun Y T, 2017. Comparison of reanalysis data and observation about summer maximum temperature on different time scales in Eastern China[J]. Plateau Meteor, 36(2):468-479. DOI:10.7522/j.issn. 1000-0534.2016.00030.<br/>张婷, 高庆九, 孙玉婷, 2017.不同时间尺度下中国东部夏季最高温度观测与再分析资料的比较[J].高原气象, 36(2):468-479.
[44]Zhang Yinghua, Liyan, LiDeshuai, et al, 2016. Study on the space distribution and circulation pattern of extreme hige temperature over Eastern China in Summer[J]. Plateau Meteor, 35(2):469-483. DOI:10.7522/j.issn. 1000-0534.2014.00159.<br/>张英华, 李艳, 李德帅, 等, 2016.中国东部夏季极端高温的空间分布特征及其环流型[J].高原气象, 35(2):469-483.
[45]Zhai P M, Pan X H, 2003. Change in extreme temperature and precipitation over Northern China during the second half of the 20th century[J]. Acta Phys Sinica, 58(z1):1-10.<br/>翟盘茂, 潘晓华, 2003.中国北方近50年温度和降水极端事件变化[J].地理学报, 58(z1):1-10.
文章导航

/