论文

台风残涡北上引发东北地区北部大暴雨的中尺度特征分析

  • 任丽 ,
  • 赵玲 ,
  • 马国忠 ,
  • 林嘉楠
展开
  • 黑龙江省气象台, 黑龙江 哈尔滨 150030;宾县气象局, 黑龙江 宾县 150400

收稿日期: 2017-11-22

  网络出版日期: 2018-12-28

基金资助

黑龙江省龙云气象科技有限责任公司气象院士工作站(YSZD201702);中国气象局预报员专项(CMAYBY2017-021);黑龙江省科技厅省院合作项目(YS18Z01)

Analysis of Mesoscale Feature of a Heavy Rainstorm Caused by Typhoon Residual Vortex in the Northern Part of Northeast China

  • REN Li ,
  • ZHAO Ling ,
  • MA Guozhong ,
  • LIN Jia'nan
Expand
  • Meteorological Observatory of Heilongjiang Province, Harbin 150030, Heilongjiang, China;Meteorological Office of Binxian, Binxian 150400, Heilongjiang, China

Received date: 2017-11-22

  Online published: 2018-12-28

摘要

使用常规观测资料、卫星云图、雷达回波资料、自动气象站降水量以及0.25°×0.25°的NCEP/NCAR再分析资料,对1710号台风"海棠"残余环流北上引发的东北地区北部的大暴雨过程进行中尺度特征分析。结果表明,台风残余环流移入东北地区后再度加强。地面上负变压中心位于气旋北侧倒槽切变处,气旋的快速发展和加强的变压风辐合,造成低层辐合加强,导致大暴雨的出现。暴雨区呈带状分布,出现向北增强的趋势,在时空分布上都有明显的中尺度特征。探空分析显示暴雨区大气处于不稳定状态,有利于以短时强降水为主的对流发展。暴雨是由MCS活动造成的,每次短时强降水均与TBB低值中心相对应,并滞后1 h左右。对流云团自南向北传播,暴雨主要出现在冷云区内或是云团后部边缘TBB大梯度区处。雷达回波的后向传播造成暴雨区一直有强回波活动,降水持续时间长;强降水是暖云降水,降水效率高,雨强大。引发暴雨的中尺度对流系统具有深厚的垂直运动,加强了低层热量和水汽的向上输送。中低层正涡柱迅速增强,水汽辐合增强,加强了中尺度对流系统的发展和持续时间。中高层有干冷空气活动,不仅触发对流,而且大大降低了大气稳定度,为对流的发生、发展提供了有利条件。

本文引用格式

任丽 , 赵玲 , 马国忠 , 林嘉楠 . 台风残涡北上引发东北地区北部大暴雨的中尺度特征分析[J]. 高原气象, 2018 , 37(6) : 1671 -1683 . DOI: 10.7522/j.issn.1000-0534.2018.00036

Abstract

Based on the conventional observational data, satellite cloud images, radar echo data, automatic weather stations rainfall and NCEP/NCAR reanalysis data (0.25°×0.25°), the mesoscale features of a heavy rainstorm by the residual circulation of Typhoon Haitang in the northern part of Northeast China from 3 to 4 August 2017 were analyzed. The major conclusions were as follow:The residual circulation of typhoon had been strengthened again after it was moved into Northeast China. The negative pressure center on the ground was located at the inverted trough shear on the north side of the cyclone. The rapid development of cyclone and the enhancement of the convergence of the variable pressure wind resulted in the lower level convergence and heavy rains. The zonal distribution in the rainstorm area showed a tendency to increase northward, and there were obvious mesoscale features in the space-time distribution. Precipitation had the characteristics of strong intensity, sudden strength and short duration. The rainstorm zone was linear, with a horizontal width of 50 km and a length of 300 km, which had typical characteristics of the mesoscale-β. The sounding analysis showed that the atmosphere was in an unstable state, which was advantageous to the convection development with short time heavy rainfall. Heavy rains were caused by the mesoscale convection systems (MCS) activities. Each time the heavy precipitation was corresponding to the black body temperature (TBB) low value center, and the delay was about 1 h. In the process of convective cloud spreading from south to north, heavy rain occurred mainly in the area of cold cloud area or the TBB gradient at the posterior edge of the cloud cluster. The backward propagation of radar echo caused the strong echo activity in the rainstorm zone, and the precipitation lasted for a long time. Heavy precipitation was a warm cloud precipitation which led to high precipitation efficiency and strong rainfall. The mesoscale convective system which caused torrential rain, had a deep vertical motion. The deep vertical motion strengthened the lower layer heat and water vapor transmission. The positive vortex column of middle and lower level was enhanced rapidly, and the water vapor convergence was enhanced, which strengthened the development and duration of mesoscale convective systems. The middle and upper layer had dry air activity, which not only triggered convection, but also greatly reduced the atmospheric stability and provided favorable conditions for the occurrence and development of convection.

参考文献

[1]Browning K A, Golding B W, 1995. Mesoscale aspects of a dry intrusion within a vigorous cyclone[J]. Quart J Roy Meteor soc, 121:463-493.
[2]Browning K A, Roberts N M, 1996. Variation of frontal and precipitation structure along a cold front[J]. Quart J Roy Meteor soc, 122:1845-1872.
[3]Browning K A, 1997. The dry intrusion perspective of extra-tropical cyclone development[J]. Meteor Appl, 4(4):317-324.
[4]Lemon L R, 1998. On the mesocyclone 'dry intrusion' and tornadogesis[C]//Preprints, 19<sup>th</sup> Conference on Severe Local Storms. Minneapolis: Amer Meteor Soc, 752-755.
[5]常煜, 李秀娟, 陈超, 等, 2016.内蒙古一次暴雨过程中尺度特征及成因分析[J].高原气象, 35(2):432-443.
[6]Chang Y, Li X J, Chen C, et al, 2016. Mesoscale characteristics of a rainstorm Process in inner mongolia and Its cause analysis[J]. Plateau Meteor, 35(2):432-443. DOI:10.7522/j.issn. 1000-0534.2014.00155.
[7]梁军, 李英, 张胜军, 等, 2015.影响辽东半岛两个台风Meari和Muifa暴雨环流特征的对比分析[J].大气科学, 39(6):1215-1224.
[8]Liang J, Li Y, Zhang S J, et al, 2015. Comparison of synoptic circulations of heavy rain associated with typhoons Meari and Muifa over Liaodong Peninsula[J]. Chinese J Atmos Sci, 39(6):1215-1224. DOI:10.3878/j.issn. 1006-9895.1503.14191.
[9]刘会荣, 李崇银, 2010.干侵入对济南"7·18"暴雨的作用[J].大气科学, 34(2):374-386.
[10]Liu H R, Li C Y, 2010. Impacts of the dry intrusion on Jinan torrential rain occurring on 18 July 2007[J]. Chinese J Atmos Sci, 34(2):374-386. DOI:10.3878/j.issn. 1006-9895.2010.02.11.
[11]刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报, 70(3):354-370.
[12]Liu Y, Wang D H, Zhang Z F, et al, 2012. A comprehensive analysis of the structure of a northeast China-old-ortex and its characteristics of evolution[J]. Acta Meteor Sinica, 70(3):354-370. DOI:10.11676/qxxb2012.032.
[13]马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4):960-970.
[14]Ma L C, Sun L, Wang N, 2017. Analysis of water vapor transport characteristics of typical rainstorm cases in Northeast China[J]. Plateau Meteor, 36(4):960-970. DOI:10.7522/j.issn. 1000-0534.2016.00078.
[15]任丽, 王承伟, 张桂华, 等, 2013.台风布拉万(1215)深入内陆所致的大暴雨成因分析[J].气象, 39(12):1561-1569.
[16]Ren L, Wang C W, Zhang G H, et al, 2013. Analysis of severe rainstorm caused by Typhoon Bolaven (1215) invading interior territory[J]. Meteor Mon, 39(12):1561-1569.
[17]孙军, 代刊, 樊利强, 2011.2010年7-8月东北地区强降雨过程分析和预报技术探讨[J].气象, 37(7):785-794.
[18]Sun J, Dai K, Fan L Q, 2011. Analysis and forecasting technology on the heavy rainfall processes in the Northeast China during July to August 2010[J]. Meteor Mon, 37(7):785-794.
[19]孙力, 董伟, 药明, 等, 2015.1215号"布拉万"台风暴雨及降水非对称性分布的成因分析[J].气象学报, 73(1):36-49.
[20]Sun L, Dong W, Yao M, et al, 2015. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven (2012)[J]. Acta Meteor Sinica, 73(1):36-49. DOI:10.11676/qxxb2015.004.
[21]孙力, 马梁臣, 沈柏竹, 等, 2016.2010年7-8月东北地区暴雨过程的水汽输送特征分析[J].大气科学, 40(3):630-646.
[22]Sun L, Ma L C, Shen B Z, et al, 2016. A diagnostic study of water vapor transport and budget of heavy rainfall over Northeast China during July to August 2010[J]. Chinese J Atmos Sci, 40(3):630-646. DOI:10.3878/j.issn. 1006-9895.1506.15101.
[23]王承伟, 齐铎, 徐玥, 等, 2017.冷空气入侵台风"灿鸿"引发的东北暴雨分析[J].高原气象, 36(5):1257-1266.
[24]Wang C W, Qi D, Xu Y, et al, 2017. Analysis of rainstorm induced by interaction between Typhoon Chan-hom (2015) and cold air in Northeast China[J]. Plateau Meteor, 36(5):1257-1266. DOI:10.7522/j.issn. 1000-0534.2016.00082.
[25]王宗敏, 李江波, 王福侠, 等, 2015.东北冷涡暴雨的特点及其非对称结构特征[J].高原气象, 34(6):1721-1731.
[26]Wang Z M, Li J B, Wang F X, et al, 2015. Asymmetric characteristics of the Northeast Cold Vortex and its effect on heavy rain[J]. Plateau Meteor, 34(6):1721-1731. DOI:10.7522/j.issn. 1000-0534.2014.00084.
[27]王宁, 王秀娟, 张硕, 等, 2016.吉林省一场持续性暴雨成因及MCC特征分析[J].气象, 42(7):809-818.
[28]Wang N, Wang X J, Zhang S, et al, 2016. Analysis on causes and MCC characteristics of a continual heavy rain process in Jilin Province[J]. Meteor Mon, 42(7):809-818. DOI:10.7519/j.issn. 1000-0526.2016.07.004.
[29]魏铁鑫, 缪启龙, 段春锋, 等, 2015.近50a东北冷涡暴雨水汽源地分布及其水汽贡献率分析[J].气象科学, 35(1):60-65.
[30]Wei T X, Miao Q L, Duan C F, et al, 2015. Water vapor sources distribution of cold eddy rainstorm in Northeast China and its contribution analysis in recent fifty years[J]. J Meteor Sci, 35(1):60-65. DOI:10.3969/2013jms. 0080.
[31]吴庆梅, 张胜军, 刘卓, 等, 2015.北京一次对流暴雨过程的干冷空气活动及作用[J].高原气象, 34(6):1690-1698.
[32]Wu Q M, Zhang S J, Liu Z, et al, 2015. Activities of cold-dry air and its impact on convective heavy rain process in Beijing[J]. Plateau Meteor, 34(6):1690-1698. DOI:10.7522/j.issn. 1000-0534.2014.00081.
[33]袁美英, 李泽椿, 张小玲, 等, 2011.中尺度对流系统与东北暴雨的关系[J].高原气象, 30(5):1224-1231.
[34]Yuan M Y, Li Z C, Zhang X L, et al, 2011. Relationship between mesoscale convective systemand rainstorm in Northeast China[J]. Plateau Meteor, 30(5):1224-1231.
[35]袁美英, 李泽椿, 张小玲, 2010.东北地区一次短时大暴雨β中尺度对流系统分析[J].气象学报, 68(1):125-136.
[36]Yuan M Y, Li Z C, Zhang X L, 2010. Analysis of a meso-<i>β</i> scale convective system during a brief torrential rain event in Northeast China[J]. Acta Meteor Sinica, 68(1):125-136. DOI:10.11676/qxxb2010.013.
[37]赵宇, 李静, 杨成芳, 2016.与台风"海鸥"相关暴雨过程的水汽和干侵入研究[J].高原气象, 35(2):444-459.
[38]Zhao Y, Li J, Yang C F. 2016. Study on water vapor and dry intrusion in a heavy rainfall event associated with Typhoon Haiou[J]. Plateau Meteor, 35(2):444-459. DOI:10.7522/j.issn. 1000-0534.2015.00061.
[39]郑秀雅, 张廷治, 白人海, 1992.东北暴雨[M].北京:气象出版社, 1-6.
[40]Zheng X Y, Zhang T Z, Bai R H, 1992. Northeast Rainstorm[M]. Beijing:China Meteorological Press, 1-6.
[41]钟水新, 王东海, 张人禾, 等, 2011.一次东北冷涡降水过程的结构特征与影响因子分析[J].高原气象, 30(4):951-960.
[42]Zhong S X, Wang D H, Zhang R H, et al, 2011. Analyses on the structure characteristic and formation mechanism of the rainstorm related to a Cold Vortex system over Northeast China[J]. Plateau Meteor, 30(4):951-960.
文章导航

/