论文

1951-2014年中国冬季暖日频次时空分布特征及其成因分析

  • 钟珊珊 ,
  • 李渊 ,
  • 张新厂
展开
  • 南京信息工程大学气象灾害教育部重点实验室, 气候与环境变化国际合作联合实验室, 气象灾害预报预警与评估协同创新中心, 江苏 南京 210044

收稿日期: 2018-05-26

  网络出版日期: 2018-12-28

基金资助

国家自科学基金项目(91437216,41775047,41605035)

The Spatial and Temporal Characteristics and Causes of the Frequency of Warm Winter Days in China from 1951 to 2014

  • ZHONG Shanshan ,
  • LI Yuan ,
  • ZHANG Xinchang
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-05-26

  Online published: 2018-12-28

摘要

采用英国哈德来(Hadley)中心的HadGHCND逐日近地面最高气温,定义并统计了中国冬季暖日频次(冬季高温持续6天以上的天数),分析了其变化规律及可能成因。中国冬季暖日频次有两个主模态:一个是全国一致变化型,其最大荷载区主要位于长江以北至华北地区。当中国冬季暖日频次一致增多,在东半球中-高纬为正负偶极型高度异常分布。另一个是南北反位相不对称型,其最大荷载区在青藏高原东南部坡度较大区域。当暖日频次北少南多,大气环流场呈现从极地向南排列的"+-+"高度异常分布。这种分布类似北极涛动(Arctic Oscillation,AO)型(负位相)和北太平洋西部南北反位相的西太平洋(Western Pacific,WP)型的组合。中国邻海异常暖SSTA和黑潮延伸区异常暖舌的分布与上述两个主模态有密切联系,对冬季暖日频次的季节预测具有先兆意义。此外,青藏高原地形以及冬季冷源的热力作用对于高原附近暖日频次变化有重要影响。

本文引用格式

钟珊珊 , 李渊 , 张新厂 . 1951-2014年中国冬季暖日频次时空分布特征及其成因分析[J]. 高原气象, 2018 , 37(6) : 1725 -1736 . DOI: 10.7522/j.issn.1000-0534.2018.00095

Abstract

In this paper, the frequency of warm winter days (FWWD) in China (the number of days that high temperature lasts over 6 days) was defined using the observed daily maximum near-surface temperature of HadGHCND from Hadley centre in the UK, and then its variation and possible causes were discussed. There are two main modes for the FWWD. One is a uniform variation pattern, with the maximum mainly located between the north of Yangtze River and north China. When FWWD increases uniformly, the geopotential height shows a dipole distribution with positive and negative anomaly overlying the middle and high latitudes in the eastern hemisphere. The increase of gradient of the geopotential height between the middle and high latitude, leads to the enhancement of the abnormal westerly wind, weakening the meridional circulation between the middle and high latitudes. Therefore, the circulation is dominated by zonal westerly, and the activities of strong cold air are confined near its source. Accordingly, it is difficult for cold air to invade China, resulting in the increase of FWWD. The other is an asymmetric pattern of north-south out of phase, with the maximum located at the steep slope in the southeast of the Qinghai-Tibetan Plateau. When the FWWD is less in the north and more in the south in China, the geopotential height anomalies are arranged orderly as "+-+" southward from the pole. This distribution is similar to the combination of Arctic Oscillation (AO) and Western Pacific (WP) teleconnection pattern. In winter, the Qinghai-Tibetan Plateau, as a elevated cold source, forms a cold high near the surface due to thermal effect, and the anomalous anticyclonic circulation over the Qinghai-Tibetan Plateau strengthens the divergence of airflow, causing the atmosphere subsidence and increase the temperature near the plateau, which is favourable for the maintenance of warm days near the plateau, and more FWWD. The anomalous warm SSTA in China's adjacent sea and warm tongue in the Kuroshio extension area are closely related to the above two main patterns. For the uniform variation pattern, the strongest signal of SSTA is concentrated in the north of the Yangtze River, and for the asymmetric pattern of north-south out of phase, strongest signal of SSTA is located in the south of the Yangtze River. These signals are continuous and have the premonitory significance to the seasonal prediction of the FWWD. In addition, the topography of Qinghai-Tibetan Plateau and the thermal effects as cold source in winter have important effect on the variation of the FWWD around the plateau.

参考文献

[1]Caesar J, Alexander L, Vose R, 2006. Large-scale changes in observed daily maximum and minimum temperatures:Creation and analysis of a new gridded data set[J]. J Geophys Res (Atmospheres), 111(D05):D05101. DOI:10.1029/2005JD006280.
[2]Cai D L, You Q L, Fraedrich K, et al, 2017. Spatiotemporal temperature variability over the Tibetan Plateau:Altitudinal dependence associated with the global warming hiatus[J]. J Climate, 30(3):969-983. DOI:10.1175/JCLI-D-16-0343.1.
[3]Chen Y N, Zhu Z W, Luo L, et al, 2018. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies[J]. Dyn Atmos Oceans, 81:73-83. DOI:10.1016/j.dynatmoce. 2018.01.002.
[4]Jiang Z H, Yang H, Liu Z Y, et al, 2014. Assessing the influence of regional SST modes on the winter temperature in China:The effect of tropical Pacific and Atlantic[J]. J Climate, 27(2):868-879. DOI:10.1175/JCLI-D-12-00847.1.
[5]Kalnay E, Kanamitsu M, Kistler R, et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 77(3):437-471.
[6]Ren Q, Zhu Z W, Hao L P, et al, 2017. The enhanced relationship between Southern China winter rainfall and warm pool ocean heat content[J]. Int J Climatol, 37(1):409-419.
[7]Smith T M, Reynolds R W, 2004. Improved extended reconstruction of SST (1854-1997)[J]. J Climate, 17(12):2466-2477.
[8]Wang B, Wu R G, Fu X H, 2000. Pacific-East Asian teleconnection:How does ENSO affect East Asian climate[J]. J Climate, 13(9):1517-1536.
[9]Wang B, Wu Z W, Chang C P, et al, 2010. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon:The northern and southern temperature modes[J]. J Climate, 23(6):1495-512. DOI:10.1175/2009JCLI3243.1.
[10]Wu Z, Lin H, Li J, et al, 2012. Heat wave frequency variability over North America:Two distinct leadingmodes[J]. J Geophys Res, 117(D2):D02102. DOI:10.1029/2011JD016908.
[11]Zhu Z W, Li Tim, He J H, 2014. Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southernChina[J]. J Climate, 27(3):1083-1099. DOI:10.1175/JCLI-D-13-00180.1.
[12]Chen Y, Ren G Y, Wang L, et al, 2009. Temporal change of warm events over the last 56 years in China[J]. J Appl Meteor Sci, 20(5):539-545.<br/>陈峪, 任国玉, 王凌, 等, 2009.近56年我国暖冬气候事件变化[J].应用气象学报, 20(5):539-545.
[13]Ding Y H, Dai X S, 1994. Temperature variation in China during the last 100 years[J]. Meteor Mon, 20(12):19-26.<br/>丁一汇, 戴晓苏, 1994.中国近百年来的温度变化[J].气象, 20(12):19-26.
[14]Ding Y H, Ren G Y, Zhao Z C, et al, 2007. Detection, attribution and projection of climate over China[J]. Desert Oasis Meteor, 1 (1):1-10.<br/>丁一汇, 任国玉, 赵宗慈, 等, 2007.中国气候变化的检测及预估[J].沙漠与绿洲气象, 1 (1):1-10.
[15]Dong M, Wu T W, Zuo Q J, et al, 2018. A simulation comparison study on the climatic characteristics of the South Asia High by the BCC climate system model[J]. Plateau Meteor, 37(2):455-468. DOI:10.7522/j.issn. 1000-0534.2017.00051.<br/>董敏, 吴统文, 左群杰, 等, 2018.气候系统模式对南亚高压气候特征的模拟比较研究[J].高原气象, 37(2):455-468.
[16]Gong D Y, Wang S W, 1999. Abnormal warm and cold winter in China during past century[J]. Journal of Catastrophology, 14(2):63-68.<br/>龚道溢, 王绍武, 1999.近百年我国的异常暖冬与冷冬[J].灾害学, 14(2):63-68.
[17]Guan H G, Yu J H, 2014. Relationship between anomalous pattern of air temperature in eastern China and sea surface temperature anomaly mode[J]. J Meteor Sci, 34(6):656-665.<br/>关惠戈, 余锦华, 2014.中国东部气温异常型与海表温度异常模关系的诊断[J].气象科学, 34(6):656-665.
[18]Guo Q Y, 1994, Relationship between the variations of East Asian winter monsoon and temperature anomalies in China[J]. J Appl Meteor Sci, 5(2):218-225.<br/>郭其蕴, 1994.东亚冬季风的变化与中国气温异常的关系[J].应用气象学报, 5(2):218-225.
[19]He J H, Wu F M, Qi L, et al, 2015. Decadal/interannual linking between autumn Arctic sea ice and following winter Eurasian air temperature[J]. Chinese J Geophys, 58(4):1089-1102.<br/>何金海, 武丰民, 祁莉, 等, 2015.秋季北极海冰与欧亚冬季气温在年代际和年际尺度上的不同联系[J].地球物理学报, 58(4):1089-1102.
[20]He X C, Ding Y H, He J H, 2008. Response characteristics of the East Asian winter monsoon to ENSO eEvents[J]. Chinese Atmos Sci, 32(2):335-344.<br/>何溪澄, 丁一汇, 何金海, 2008.东亚冬季风对ENSO事件的响应特征[J].大气科学, 32(2):335-344.
[21]Kang L H, Chen W, Wei K, 2006. The inter-decadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation[J]. Climatic Environ Res, 11 (3):330-339.<br/>康丽华, 陈文, 魏科, 2006.我国冬季气温年代际变化及其与大气环流异常变化的关系[J].气候与环境研究, 11 (3):330-339.
[22]Kang L H, Chen W, Wang L, et al, 2009. Inter-annual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature[J]. Climatic Environ Res, 14(1):45-53.<br/>康丽华, 陈文, 王林, 等, 2009.我国冬季气温的年际变化及其与大气环流和海温异常的关系[J], 气候与环境研究, 14(1):45-53.
[23]Li W J, Li Y, Chen L J, et al, 2013. Inter-decadal variability of the relationship between winter temperature in China and its impact factors[J]. J Appl Meteor Sci, 24(4):385-396.<br/>李维京, 李怡, 陈丽娟, 等, 2013.我国冬季气温与影响因子关系的年代际变化[J].应用气象学报, 24(4):385-396.
[24]Liang S J, Ding Y H, Zhao N, et al, 2014. Analysis of the inter-decadal changes of the wintertime surface air temperature over mainland China and regional atmospheric circulation characteristics during 1960-2013[J]. Chinese J Atmos Sci, 38 (5):974-992. DOI:10.3878/j.issn. 1006-9895.1401.13234.<br/>梁苏洁, 丁一汇, 赵南, 等, 2014.近50年中国大陆冬季气温和区域环流的年代际变化研究[J].大气科学, 38 (5):974-992.
[25]Miao Q L, Xu X Z, Pan W Z, 2008. Winter temperature characteristics of Nanjing during 1951-2006[J]. J Appl Meteor Sci, 19(5):620-626.<br/>缪启龙, 许遐祯, 潘文卓, 2008.南京56年来冬季气温变化特征[J].应用气象学报, 19(5):620-626.
[26]Qian W H, Zhang W W, 2007. Changes in cold wave events and warm winter in China during the last 46 years[J]. Chinese J Atmos Sci, 31(6):1266-1278.<br/>钱维宏, 张玮玮, 2007.我国近46年来的寒潮时空变化与冬季增暖[J].大气科学, 31(6):1266-1278.
[27]Sun L H, Zhao Z G, 2004. Analysis of Warm Winter in China[J]. Meteor Mon, 30(12):57-60.<br/>孙林海, 赵振国, 2004.我国暖冬气候及其成因分析[J].气象, 30(12):57-60.
[28]Wang Z Q, Zhang W J, Geng X, 2017. Different influences of two types of ENSO on winter temperature and cold extremes in northern China[J]. Acta Meteor Sinica, 75(4):564-580.<br/>汪子琪, 张文君, 耿新, 2017.两类ENSO中国北方冬季平均气温和极端低温的不同影响[J].气象学报, 75(4):564-580.
[29]Wang L, Zhang Q, Chen Y, et al, 2007. Changes of warmer winter and winter temperature over China in the past 50 years[J]. Adv Climate Change Res, 3(1):26-30.<br/>王凌, 张强, 陈峪, 等, 2007.1956-2005年中国暖冬和冬季温度变化[J].气候变化研究进展, 3(1):26-30.
[30]Wu Q, Jiang X W, Xie J, 2017. Evaluation of surface air temperature in southwestern China simulated by the CMIP5 models[J]. Plateau Meteor, 36(2):358-370. DOI:10.7522/j.issn. 1000-0534.2016.00046.<br/>伍清, 蒋兴文, 谢洁, 2017. CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 36(2):358-370.
[31]Yan X D, Song Y, Huang C R, et al, 2017. Temporal and spatial characteristics of winter temperature in Guizhou and its relationships with ocean and atmosphere[J]. Plateau Meteor, 36(5):1336-1345. DOI:10.7522/j.issn. 1000-0534.2016.00122.<br/>严小冬, 宋燕, 黄晨然, 等, 2017.贵州省冬季气温的时空特征及其与海气的关系[J].高原气象, 36(5):1336-1345.
[32]Yin M, Xiao Z N, Li X, et al, 2016. Evolement of the Kuroshio warm tongue in the East China Sea and its relationship with temperature in China[J]. Climatic Environ Res, 21 (3):333-345. DOI:10.3878/j.issn. 1006-9585.2016.15245.<br/>殷明, 肖子牛, 黎鑫, 等, 2016.东海黑潮暖舌的演变及其对我国气温的影响[J].气候与环境研究, 21 (3):333-345.
[33]Zhang R N, Zhang R H, Zuo Z Y, 2015. Winter snow cover variability over China and its relation to Arctic Oscillation[J]. Chinese J Atmos Sci, 39 (3):634-642. DOI:10.3878/j.issn. 1006-9895.1405.14170.<br/>张若楠, 张人禾, 左志燕, 2015.中国冬季积雪变异及其与北极涛动的联系[J].大气科学, 39 (3):634-642.
[34]Zhou Z J, Wang Y, 2000. Studies on winter temperature variation in China in 1951-1997[J]. Nanjing Institute of Meteorology, 23(1):106-112.<br/>周自江, 王颖, 2000.中国近46年冬季气温序列变化的研究[J].南京气象学院学报, 23(1):106-112.
[35]Zhu Y F, Tan G R, Wang Y G, 2007. Variation of spatial model for winter temperature in China and its relationship with the large scale atmospheric circulation[J]. Adv Climate Change Res, 3(5):266-270.<br/>朱艳峰, 谭桂容, 王永光, 2007.中国冬季气温变化的空间模态及其与大尺度环流异常的联系[J].气候变化研究进展, 3(5):266-270.
文章导航

/