论文

青藏高原南侧经圈环流变化特征及其对降水影响分析

  • 胡梦玲 ,
  • 游庆龙
展开
  • 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;南京市江宁区气象局, 江苏 南京 211100

收稿日期: 2018-02-12

  网络出版日期: 2019-02-28

基金资助

国家重点研发计划项目(2016YFA0601702);国家自然科学基金项目(41771069);江苏高校优势学科建设工程资助项目(PAPD)

Characteristics of Meridional Circulation Cell on the South Side of Qinghai-Tibetan Plateau and its Effects on Precipitation over the region

  • HU Mengling ,
  • YOU Qinglong
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China;Nanjing Jiangning Meteorological Bureau, Nanjing Jiangning 211100, Jiangsu, China

Received date: 2018-02-12

  Online published: 2019-02-28

摘要

基于1979-2015年青藏高原(下称高原)地区气象观测站的逐日降水资料和ERA-Interim逐日再分析资料,分析高原南侧经圈环流的季节演变及年际变化特征,并讨论其对高原降水及水汽输送的影响。结果表明,高原南侧80°E-90°E范围存在前季风环流、季风环流、Hadley环流的季节演变,前季风环流有-0.377 s-1·(10a)-1减弱的趋势,季风环流有0.524 m·s-1·(10a)-1显著增强趋势。在90°E-105°E范围存在季风环流和Hadley环流季节转换,季风环流存在0.413 m·s-1·(10a)-1的增强趋势。基于各经圈环流开始、结束时间的定义,发现在80°E-90°E,前季风环流建立的时间有推迟而结束时间有提前的现象,其维持时间出现每10年-1.47候的缩短趋势。在90°E-105°E,季风环流维持时间增长,Hadley环流维持时间缩短。前季风环流增强使得高原水汽辐散区辐散增强,水汽辐合区辐合增强,高原西南侧有东北向水汽输送增强,而高原西北侧有西南向水汽输送增强。夏季季风环流增强,高原南部至孟加拉湾地区自南向北的经向水汽输送显著增强,印度洋向高原输送的西南向水汽通量明显增加。前季风环流增强,春季高原中部及西南部降水减少,而东南部和北部降水增加。夏季季风环流增强时,高原南侧上升支增强,高原南部降水增加,而高原北部降水出现减少。

本文引用格式

胡梦玲 , 游庆龙 . 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019 , 38(1) : 14 -28 . DOI: 10.7522/j.issn.1000-0534.2018.00064

Abstract

Based on the daily observational precipitation data and ERA-Interim daily reanalysis data from 1979 to 2015, the meridional circulation cell characteristics on the south side of Qinghai-Tibetan Plateau and its effects on precipitation and water vapor transport over the Qinghai-Tibetan Plateau had been investigated. The results are shown as follows:The pre-monsoon circulation, monsoon circulation and Hadley circulation constitute seasonal evolution of meridional circulation cell on the south side of Qinghai-Tibetan Plateau along 80°E-90°E. A decreasing trend is observed with a rate of -0.377 s-1·(10a)-1 in the intensity of pre-monsoon circulation, while an increasing trend is detected with a value of 0.524 m·s-1·(10a)-1 in the intensity of monsoon circulation. There exists the transition of monsoon circulation and Hadley circulation on the south side of Qinghai-Tibetan Plateau along 90°E-105°E. The intensity of monsoon circulation remarkably increases during 1979-2015 with a trend of 0.413 m·s-1· (10a)-1. According to the definition of building and ending time of each meridional circulation cell, the setup of pre-monsoon circulation is delayed and the ending time is advanced and hence the maintaining time of pre-monsoon circulation trends to be shortened. Along the 90°E-105°E, the maintaining time of monsoon circulation shows an increasing trend while the maintaining time of Hadley circulation presents a decreasing trend. When the pre-monsoon circulation becomes stronger, the water vapor in divergence region trends to divergent and the water vapor in convergence region trends to convergent. Moreover, north-east water vapor transport is increased on the southwest Tibetan Plateau and south-west water vapor transport is enhanced on the northwest Qinghai-Tibetan Plateau. The strong summer monsoon circulation is beneficial to northward water vapor transport in the southern Tibetan Plateau and the Bay of Bengal and south-west water vapor transport from the Indian Ocean to the Tibetan Plateau. The precipitation is decreased in the middle and southwest Qinghai-Tibetan Plateau, whereas increases in the southeast and north of the Qinghai-Tibetan Plateau are clear as pre-monsoon circulation is enhanced. When summer monsoon circulation is strengthened, the more/less rainfall occurs in the south/north of Qinghai-Tibetan Plateau.

参考文献

[1]Chen J, Carlson B E, Del Genio A D, 2002. Evidence for strengthening of the tropical general circulation in the 1990s[J]. Science, 295(5556):838-841.
[2]Chen S, Wei K, Chen W, et al, 2014. Regional changes in the annual mean Hadley circulation in recent decades[J]. Journal of Geophysical Research:Atmospheres, 119(13):7815-7832.
[3]Davis S M, Rosenlof K H, 2012. A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations[J]. Journal of Climate, 25(4):1061-1078.
[4]Fu Q, Lin P, 2011. Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures[J]. Journal of Climate, 24(21):5597-5603.
[5]Goswami B N, Krishnamurthy V, Annamalai H, 1999. A broad scale circulation index for the interannual variability of the Indian summer monsoon[J]. Quarterly Journal of the Royal Meteorological Society, 125(554):611-633.
[6]Hu Y, Zhou C, Liu J, 2011. Observational evidence for poleward expansion of the Hadley circulation[J]. Advances in Atmospheric Sciences, 28(1):33-44.
[7]Koteswarm P, 1958. The easterly jet stream in the tropics[J]. Tellus, 10(1):43-57.
[8]Lu J, Vecchi G A, Reichler T, 2007. Expansion of the Hadley cell under global warming[J]. Geophysical Research Letters, 34(14):L06805.
[9]Luo H B, Yanai M, 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. part Ⅱ:heat and moisture budgets[J]. Monthly Weather Review, 112(5):966-989.
[10]Nguyen H, Timbal B, Evans A, et al, 2013. The Hadley circulation in reanalyses:Climatology, variability and change[J]. Journal of Climate, 26(10):3357-3376.
[11]Oort A H, Peixoto J P, 1983. Global angular momentum and energy balance requirements from observations[J]. Advances in Geophysics, 25:355-490.
[12]Oort A H, Rasmusson E M, 1971. Atmospheric circulation statistics[R]. NOAA: US Government Printing Office.
[13]Scheff J, Frierson D, 2012. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts[J]. Journal of Climate, 22(12):4330-4347.
[14]Sohn B, Park S C, 2010.Strengthened tropical circulations in past three decades inferred from water vapor transport[J]. Journal of Geophysical Research:Atmospheres, 115(D15):D15112.
[15]Trenberth K E, Solomon A, 1994. The global heat balance:heat transports in the atmosphere and ocean[J]. Climate Dynamics, 10(3):107-134.
[16]Wielicki B A, Wong T, Allan R P, et al, 2002. Evidence for large decadal variability in the tropical mean radiative energy budget[J]. Science, 295(5556):841-844.
[17]Wu G X, Tibaldi S, 1988. On a computational scheme for atmospheric mean meridional circulation[J]. Science Sinica Series B, 17(4):442-450.
[18]Wu G X, Zhang Y S, 1998. Tibetan plateau forcing an d the timing of the monsoon onset over south Asia and the south China sea[J]. Monthly Weather Review, 126(4):913-927.
[19]Zhao H, Moore G, 2008. Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century[J]. International Journal of Climatology, 28(5):563-578.
[20]Zhou B, Wang H, 2006. Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley[J]. Journal of Geophysical Research:Atmospheres, 111:D16109.
[21]陈秋士, 缪锦海, 李维亮, 1964.1958年7月亚洲东南部西南季风区和太平洋信风区平均流场和平均经圈环流[J].气象学报, 9(1):51-61.
[22]黄荣辉, 1985.夏季青藏高原上空热源异常对北半球大气环流异常的作用[J].气象学报, 43(2):208-220.
[23]李建平, 2001.全球大气环流气候图集Ⅰ.气候平均态[M].北京:气象出版社, 279.
[24]敬文琪, 崔园园, 刘瑞霞, 等, 2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象, 36(4):900-911. DOI:10.7522/j.issn.1000-0534.2016.00084.
[25]龙治平, 2013.1948年以来Hadley环流边界位置与中国降水的关系[C]//中国气象学会2013年年会论文集, 南京: 中国气象学会2013年年会, 277-284.
[26]罗四维, 符二选, 1985.不同下垫面对东南亚6月环流及降水影响的数值分析[J].高原气象, 3(增刊):121-134.
[27]罗四维, 李维京, 汤筑强, 1986.青藏高原及其邻近地区反照率变化对5月东亚环流影响的数值对比分析[J].高原气象, 3(3):236-244.
[28]罗四维, 吕世华, 孙莉叶, 1984.海陆分布及高原对1、7月平均经圈环流及其季节变化的影响[J].高原气象, 3(4):1-13.
[29]马杰, 李建平, 2007.冬季北半球Hadley环流圈的增强及其与ENSO关系[J].自然科学进展, 17(11):1524-1531.
[30]钱正安, 吴统文, 梁潇云, 2001.青藏高原及周围地区的平均垂直环流特征[J].大气科学, 25(4):444-454.
[31]秦育婧, 2009.全域和局域哈德莱环流气候及异常特征再揭示及应用初探[D].南京: 南京信息工程大学, 1-144.
[32]孙瑾, 2008a.春季青藏高原南侧前季风环流圈的季节和年际变化及与东亚夏季风的关系[D].北京: 中国气象科学研究院, 1-66.
[33]孙瑾, 李维京, 韩荣青, 等, 2008b.春季高原南侧低层前季风经圈环流特征分析[J].高原气象, 27(5):933-940.
[34]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164. DOI:10.7522/j.issn.1000-0534.2016.00117.
[35]吴国雄, Stefano T, 1988.平均经圈环流在大气角动量和感热收支中的作用[J].大气科学, 12(1):8-17.
[36]吴国雄, 张永生, 1998.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ:爆发地点[J].大气科学, 22(6):825-838.
[37]吴国雄, 张永生, 1999.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ:爆发时间[J].大气科学, 23(1):51-61.
[38]邢楠, 周海, 尚可政, 等, 2010.青藏高原上空经向环流与新疆干旱的关系[J].干旱区资源与环境, 24(12):121-127.
[39]杨广基, 王兴东, 叶笃正, 1979.东亚和太平洋地区上空的平均垂直环流(二)冬季[J].大气科学, 12(4):299-305.
[40]杨伟愚, 叶笃正, 吴国雄, 1992.夏季青藏高原热力场和环流场的诊断分析Ⅱ:环流场的主要特征及其大型垂直环流场[J].大气科学, 16(3):287-301.
[41]叶笃正, 杨广基, 王兴东, 1979.东亚和太平洋上空平均垂直环流(一)夏季[J].大气科学, 3(1):1-11.
[42]叶笃正, 朱抱真, 1958.大气环流的若干基本问题[M].北京:科学出版社.
[43]张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23. DOI:10.7522/j.issn.1000-0534.2016.00028.
[44]周波涛, 王会军, 2007.长江流域夏季降水中的Hadley环流信号[C]//中国气象学会2007年年会论文集, 广州: 中国气象学会2007年年会, 313-327.
文章导航

/