论文

青藏高原未来气候变化的热动力成因分析

  • 王玉琦 ,
  • 鲍艳 ,
  • 南素兰
展开
  • 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;丹东市气象局, 辽宁 丹东 118000;中国气象科学研究院灾害天气国家重点实验室所, 北京 100081

收稿日期: 2018-04-03

  网络出版日期: 2019-02-28

基金资助

国家自然科学基金项目(41775084);南京信息工程大学人才启动经费资助项目(2243141501001);国家重点研究计划(973)项目(2013CB956004);国家重点研发项目(2018YFC1505706,2018YFC1505705)

Dynamic and Thermodynamic Effects on Climate Changes over the Qinghai-Tibetan Plateau in Response to Global Warming

  • WANG Yuqi ,
  • BAO Yan ,
  • NAN Sulan
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD); Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China;Dandong Meteorological Bureau, Dandong 118000, Liaoning, China;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2018-04-03

  Online published: 2019-02-28

摘要

利用第五次国际耦合模式比较计划(the Fifth Phase of Coupled Model Inter-comparison Project,CMIP5)的8个模式在高浓度排放路径RCP8.5下的输出资料对青藏高原(下称高原)21世纪未来气候变化进行预测,基于水汽收支方程对高原局地地表水通量P-E(降水-蒸发)变化进行热动力过程分解,求取平均环流(动力因子Mean Circulation Dynamic,MCD)、水汽辐合项(热动力因子,Thermal Dynamic,TH)等对P-E通量变化的相对贡献率,建立大尺度环流变化和高原局地气候变化的定量关系,探讨高原未来气候变化的热动力成因。研究结果表明:(1)高原未来整体变暖湿,与历史参考时期1986-2005年相比,21世纪末P-E通量增加17.9%,增湿梯度呈西北-东南向分布,以高原东南部林木分布区增加最显著;(2)在高原湿季(5-9月,也即高原植被生长季)内,因平均环流变化导致的水汽输送变化是高原未来变湿的主要原因,贡献了约53%的P-E通量增加,这与气候变暖后Hadley环流下沉支和中高纬西风环流的极向扩展有关;热动力因子贡献了12% P-E通量的增加,对高原未来的整体变湿贡献相对较小,但在三江源区热动力贡献较大,这与该区未来植被覆盖增加,植被对气候变化的正反馈加强有关。值得注意的是,受CMIP5多模式分辨率粗糙、模拟性能在高原地区差异较大等的影响,分析结果存在一定不确定性,结论比较初步,未来使用分辨率更高、物理过程更完善的模式,结合统计方法提高预测精度可进一步改善研究结果。

本文引用格式

王玉琦 , 鲍艳 , 南素兰 . 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019 , 38(1) : 29 -41 . DOI: 10.7522/j.issn.1000-0534.2018.00066

Abstract

Projected climate changes (indicated by P-E) in the Qinghai-Tibetan Plateau (QTP) in 21st century are accessed by 8 coupled climate models from the fifth Phase of the Coupled Model Inter-comparison Project (CMIP5), the possible dynamic and thermodynamic effects of large-scale general circulation on the QTP climate change are investigated based on the moisture budget equation. Results indicated the QTP is projected to be much warmer and wetter than historical period in future, with P-E increased by 17.9% in the wet season of May to September (or vegetation growing season) in the last 20 years of 21st century (from 2080 to 2099) under RCP8.5. Dynamic effects of mean flow change related to poleward expansion of Hadley cell are considered as the dominating factor of projected P-E increase, which contributes to 53% increment of P-E. Thermodynamic effects associated with specific humidity change contribute to 12% P-E increase. In the Three River Source (TRS) region where the most significant greening has been found in the QTP under RCP8.5, the positive feedback of vegetation to future climate change favor the region moisten. The uncertainty in our results highlight the need for understanding the interaction between land surface and regional climate, particularly incorporation more complicated vegetation-climate interactions mechanisms into the models to better quantify the vegetation feedback on climate change.

参考文献

[1]Bao Y, Gao Y H, Lü S H, et al, 2014. Evaluation of CMIP5 earth system models in reproducing leaf area index and vegetation cover over the Tibetan Plateau[J]. Journal of Meteorological Research, 28(6):1041-1060.
[2]Fallah B, Cubasch U, Pr?mmel K, et al. A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau[J]. Climate Dynamics, 2016, 47(5/6):1485-1495.
[3]Collins M, Knutti R, 2013. Long-term climate change:projections, commitments and irreversibility[M]. Cambridge:Cambridge University Press.
[4]Cox P M, Betts R A, Jones C D, et al, 2000.Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 408(6809):184-187.
[5]Duan A, Wu G, Zhang Q, et al, 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions[J]. Chinese Science Bulletin, 51(11):1396-1400.
[6]Frierson D M W, Lu J, Chen G, 2007. Width of the Hadley cell in simple and comprehensive general circulation models[J]. Geophysical Research Letters, 34(18):266-278.
[7]Gao J, Jiao K, Wu S, et al, 2017. Past and future effects of climate change on spatially heterogeneous vegetation activity in China[J]. Earth's Future, 5:679-692.
[8]Gao Y, Cuo L, Zhang Y, 2014. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 27(5):1876-1893.
[9]Guo D, Wang H, Li D, 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century[J]. Journal of Geophysical Research, 117(D5):1-15.
[10]Hirokazu E, Kitoh A, 2014. Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate[J]. Geophysical Research Letters, 41(5):1704-1711.
[11]Immerzeel W, Beek L, Bierkens M, 2010.Climate change will affect the Asian water towers[J]. Science, 328(5984):1382-1385.
[12]Kang S M, Lu J, 2012. Expansion of the Hadley Cell under global warming:Winter versus summer[J]. Journal of Climate, 25(24):8387-8393.
[13]Knutti R, Sedlá?ek J, 2012. Robustness and uncertainties in the new CMIP5 climate model projections[J]. Nature Climate Change, 3(4):369-373.
[14]Li L, Li W, 2015. Thermodynamic and dynamic contributions to future changes in regional precipitation variance:focus on the Southeastern United States[J]. Climate Dynamics, 45 (1/2):67-82.
[15]Liu X, Chen B, 2000.Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 20(14):1729-1742.
[16]Lorenz D J, Deweaver E T, 2007. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations[J]. Journal of Geophysical Research, 112(D10):1-11.
[17]Lu J, Vecchi G A, Reichler T, 2007. Expansion of the Hadley cell under global warming:A likely new driver for droughts[J]. Geophysical Research Letters, 34(6):125-141.
[18]Ma Y, Hu Z, Tian L, et al, 2014. Study progresses of the Tibetan Plateau climate system change and mechanism of its impact on East China[J]. Advanced Earth Science, 29(2):207-215.
[19]Pepin N, Bradley R S, Diaz H F, et al, 2015. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 5(5):424-430.
[20]Seager R, Naik N, Vecchi G A, 2010.Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming[J]. Journal of Climate, 23(17):4651-4668.
[21]Seager R, Neelin D, Simpson I, et al, 2014. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming[J]. Journal of Climate, 27(20):7921-7948.
[22]Seager R, Ting M, Held I, et al, 2007. Model projections of an imminent transition to a more arid climate in southwestern North America[J]. Science, 316(5828):1181-1184.
[23]Seager R, Vecchi G A, 2009. Greenhouse warming and the 21st century hydro climate of southwestern North America[J]. Proc Natl Acad Sci, 107(50):21277-21282.
[24]Su F, Duan X, Chen D, et al, 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 26(10):3187-3208.
[25]Tao L, Hu Y, Liu J, 2015. Anthropogenic forcing on the Hadley circulation in CMIP5 simulations[J]. Climate Dynamics, 46(9/10):3337-3350.
[26]Taylor K E, Stouffer R J, Meehl G A, 2012. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 93(4):485-498.
[27]Trenberth K E, Guillemot C J, 1995. Evaluation of the global atmospheric moisture budget as seen from analyses[J]. Journal of Climate, 8(9):2255-2280.
[28]Wang X, Sun Z, Zhou A G, 2014. Alpine cold vegetation response to climate change in the westernNyainqentanglha range in 1972-2009[J]. The Scientific World Journal, 2014:1-9.
[29]Wu Q B, Zhang T J, 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 113(D13):1-22.
[30]Wu Q B, Zhang T J, 2010.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 115(D9):D09107. DOI:10.1029/2009JD012974.
[31]Wu Q, Yu W, Jin H, 2017. No protection of permafrost due to desertification on the Qinghai-Tibet Plateau[J]. Scientific Reports, 7(1):1544.
[32]Wu T, Zhao L, Li R, et al, 2013. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau[J]. International Journal of Climatology, 33(3):920-930.
[33]Yan L, Liu X, 2014. Has climatic warming over the Tibetan Plateau paused or continued in recent years[J]. Journal of Earth, Ocean Atmospheric Sciences, 1(1):13-28.
[34]Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global Planet Change, 112(1):79-91.
[35]Yao T, 2004. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science China (earth Science), 47(12):1065-1075.
[36]Yao T, Thompson L, Yang W, et al, 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9):663-667.
[37]You Q, Kang S, Aguilar E, et al, 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research, 113(D7):1639-1647.
[38]Yu M, Wang GL, Parr D, et al, 2014. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19GCMs[J]. Climatic Change, 127(2):257-271.
[39]Zhang W, Zhou T, Zhang L, 2017. Wetting and greening Tibetan Plateau in early summer in recent decades[J]. Journal of Geophysical Research, 122(11):5808-5822.
[40]Zhang Y, Wang D, Zhai P, et al, 2013. Spatial distributions and seasonal variations of tropospheric water vapor content over the Tibetan Plateau[J]. Journal of Climate, 26(15):5637-5654.
[41]Zhou T, Yu R, 2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models[J]. Journal of Climate, 19(22):5843-5858.
[42]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5):1176-1187. DOI:10.7522/j.issn.1000-0534.2016.00131.
[43]程志刚, 刘晓东, 范广洲, 等, 2011.21世纪青藏高原气候时空变化评估[J].干旱区研究, 8(4):669-676.
[44]戴加洗, 1990.青藏高原气候[M].北京:气象出版社, 171-175.
[45]戴升, 申红艳, 李林, 等, 2013.柴达木盆地气候由暖干向暖湿转型的变化特征分析[J].高原气象, 32(1):211-220.DOI:10.7522/j.issn.1000-0534.2012.00021.
[46]段安民, 刘青, 吴国雄, 2003.青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学(地球科学), 33(10):997-1004.
[47]范广洲, 罗四维, 吕世华, 1997.青藏高原冬季积雪异常对东、南亚夏季风影响的初步数值模拟研究[J].高原气象, 16(2):140-152.
[48]冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43(6):633-636.
[49]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j.issn.1000-0534.2016.00125.
[50]胡芩, 姜大膀, 范广洲, 2015.青藏高原未来气候变化预估:CMIP5模式结果[J].大气科学, 39(2):260-270.
[51]计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象, 36(5):1188-1200.J DOI:10.7522/j.issn.1000-0534.2016.00119.
[52]李红梅, 李林, 2015.2℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J].气候变化研究进展, 11(3):157-164.
[53]李森, 董玉祥, 董光荣, 等, 2001.青藏高原土地沙漠化区划[J].中国沙漠, 21(4):418-427.
[54]李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土, 38(5):1233-1240.
[55]刘维成, 张强, 傅朝, 2017.近55年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6):1533-1545. DOI:10.7522/j.issn.1000-0534.2017.00081.
[56]刘晓东, 罗四维, 钱永甫, 1989.青藏高原地表热状况对夏季东亚大气环流影响的数值模拟[J].高原气象, 8(3):205-216.
[57]龙妍妍, 范广洲, 李飞, 等, 2018.高原夏季风对中国夏季极端降水的影响研究[J].高原气象, 37(1):1-12. DOI:10.7552/j.issn.1000-0534.2017.00010.
[58]缪启龙, 张磊, 丁斌, 2007.青藏高原近40年的降水变化及水汽输送分析[J].气象与减灾研究, 30(1):14-18.
[59]施雅风, 沈永平, 李栋梁, 等, 2003.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究, 23(2):152-164.
[60]王青霞, 2014.青藏高原植被变化特征及未来变化趋势预估[D].兰州: 兰州大学.
[61]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164. DOI:10.7552/j.issn.1000-0534.2016.00117.
[62]王朕, 梁川, 张彦南, 2017.青藏高原三江源区干湿变化特征及影响因素分析[J].水电能源科学, 35(2):12-16.
[63]韦志刚, 黄荣辉, 董文杰, 2003.青藏高原气温和降水的年际和年代年际变化[J].大气科学, 27(2):157-170.
[64]吴绍洪, 尹云鹤, 郑度, 等, 2005.青藏高原近30年气候变化趋势[J].地理学报, 60(1):3-11.
[65]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 54-59.
[66]张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60(32):3036-3047.
[67]张镱锂, 李炳元, 郑度, 2002.论青藏高原范围与面积[J].地理研究, 21(1):1-8.
[68]郑然, 李栋梁, 2016.1971-2011年青藏高原干湿气候区界线的年代际变化[J].中国沙漠, 36(4):1106-1115.
[69]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(地球科学), 52(11):1679-1693.
文章导航

/