[1]Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ:Model implementation and sensitivity[J]. Monthly Weather Review, 129(4):569-585.
[2]Dickinson R E, 1983. Land surface processes and climate-surface albedos and energy balance[J]. Advances in geophysics, 25:305-353.
[3]Dickinson R E, 1986. Biosphere/atmosphere transfer scheme (BATS) for the NCAR community climate model[J]. Technical report, NCAR.
[4]Geleyn J F, Preuss H J, 1983. A new data set of satellite-derived surface albedo values for operational use at ECMWF[J]. Meteorology and Atmospheric Physics, 32(4):353-359.
[5]Hall D K, Riggs G A, Salomonson V V, et al, 2002. MODIS snow-cover products[J]. Remote sensing of Environment, 83(1/2), 181-194.
[6]Lewis P, Guanter L, López G, et al, 2012. GlobAlbedo Algorithm Theoretical Basis Document V3.1[Z]. <a href="http://www.globalbedo.org" target="_blank">http://www.globalbedo.org</a>.[2018-03-15].
[7]Li Y, Wang T, Zeng Z, et al, 2016. Evaluating biases in simulated land surface albedo from CMIP5 global climate models[J]. Journal of Geophysical Research:Atmospheres, 121(11):6178-6190.
[8]Liang S, 2003. A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(1), 136-145.
[9]Liu Q, Wang L, Qu Y, et al, 2013. Preliminary evaluation of the long-term GLASS albedo product. International Journal of Digital Earth, 6:69-95.
[10]Lofgren B M, 1995. Surface albedo-climate feedback simulated using two-way coupling[J]. Journal of Climate, 8(10):2543-2562.
[11]Nai Y, Zeng X, Dickinson R E, 2001. Common Land Model (CLM) Technical Documentation and User's Guide[Z]. <a href="http://www.cesm.ucar.edu/models/clm" target="_blank">http://www.cesm.ucar.edu/models/clm</a>.[2018-03-15].
[12]Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah land surface model with multiparameterization options (Noah-MP):1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research:Atmospheres, 116(D12):1248-1256.
[13]Niu K, Choler P, Zhao B, et al, 2009. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands[J]. Functional ecology, 23(2):274-283.
[14]Pinty B, Roveda F, Verstraete M M, et al, 2000.Surface albedo retrieval from Meteosat:2. Applications[J]. Journal of Geophysical Research:Atmospheres, 105(D14):18113-18134.
[15]Pinty B, Taberner M, Haemmerle V R, et al, 2011. Global-scale comparison of MISR and MODIS land surface albedos[J]. Journal of Climate, 24(3):732-749.
[16]Román M O, Schaaf C B, Woodcock C E, et al, 2009. The MODIS (Collection V005) BRDF/albedo product:Assessment of spatial representativeness over forested landscapes[J]. Remote Sensing of Environment, 113(11):2476-2498.
[17]Taberner M, Pinty B, Govaerts Y, et al, 2010.Comparison of MISR and MODIS land surface albedos:Methodology[J]. Journal of Geophysical Research:Atmospheres, 115:D05101. DOI:10.1029/2009JD012665.
[18]Wang S, Zhang Y, Lü S, et al, 2013. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau[J]. Advances in Atmospheric Sciences, 30(2):411.
[19]Ye D Z, Gao Y X, 1979. The meteorology of the Qinghai-Xizang (Tibet) plateau[J]. Beijing: Science Press, 1-278.
[20]Zhao L, Jin J, Wang S Y, et al, 2012. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. Journal of Geophysical Research:Atmospheres, 117(D9).
[21]陈隆勋, 龚知本, 温玉璞, 等, 1964.东亚地区的大气辐射能的收支(一)-地球和大气的太阳辐射能收支[J].气象学报, 32(2):146-161.
[22]陈爱军, 胡慎慎, 卞林根, 等, 2015.青藏高原GLASS地表反照率产品精度分析[J].气象学报, 73(6):1114-1120.
[23]陈爱军, 梁学伟, 卞林根, 等, 2016a.青藏高原MODIS地表反照率反演质量分析[J].高原气象, 35(2):277-284. DOI:10.7522/j. issn. 1000-0534.2015.00015.
[24]陈爱军, 吴倩倩, 卞林根, 等, 2016b.青藏高原MODIS地表反照率与地面观测结果的比较[J].科技通报32(11):47-50.
[25]陈爱军, 周婵, 卞林根, 等, 2016c.藏北高原GlobAlbedo地表反照率的精度分析[J].高原气象, 35(4):887-894. DOI:10.7522/j. issn. 1000-0534.2015.00097.
[26]胡慎慎, 2016.多源数据对比分析青藏高原GLASS地表反照率[D].南京: 南京信息工程大学.
[27]刘晓东, 田良, 韦志刚, 1994.青藏高原地表反射率变化对东亚夏季风影响的数值试验[J].高原气象, 13(4):468-472.
[28]林朝晖, 1995.气候模式中的反馈机制及模式改进的研究[D].北京: 中国科学院大气物理研究所.
[29]刘强, 瞿瑛, 王立钊, 等, 2012. GLASS陆表反照率产品使用手册[Z/OL]. <a href="http://www.docin.com/p-912177174.html" target="_blank">http://www.docin.com/p-912177174.html</a>.[2018-03-22].
[30]梁顺林, 张晓通, 肖志强, 等, 2014.全球陆表特征参量(GLASS)产品算法验证与分析[M].北京:高等教育出版社.
[31]李照国, 吕世华, 奥银焕, 等, 2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展, 31(5):602-608.
[32]李德帅, 王金艳, 王式功, 等, 2014.陇中黄土高原半干旱草地地表反照率的变化特征[J].高原气象, 33(1):89-96. DOI:10.7522/j. issn. 1000-0534.2012.00178.
[33]廖瑶, 吕达仁, 何晴, 2014. MODIS, MISR与POLDER 3种全球地表反照率卫星反演产品的比较与分析[J].遥感技术与应用, 29(6):1008-1019.
[34]李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2):330-339. DOI:10.7522/j. issn. 1000-0534.2016.00074.
[35]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2):317-324. DOI:10.7522/j. issn. 1000-0534.2017.00040.
[36]马耀明, 刘东升, 苏中波, 等, 2004.卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J].大气科学, 28(1):23-31.
[37]马耀明, 姚檀栋, 王介民, 等, 2006.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12):1215-1223.
[38]齐文栋, 刘强, 洪友堂, 2014.3种反演算法的地表反照率遥感产品对比分析[J].遥感学报, 18(3):559-572.
[39]孙俊, 胡泽勇, 荀学义, 等, 2011.黑河中上游不同下垫面反照率特征及其影响因子分析[J].高原气象, 30(3):607-613.
[40]王介民, 高峰, 2004.关于地表反照率遥感反演的几个问题[J].遥感技术与应用, 19(5):295-300.
[41]王鸽, 韩琳, 2010.地表反照率研究进展[J].高原山地气象研究, 30(2):79-83.
[42]吴宏伊, 童玲, 陈云坪, 2012.基于中国通量网的MODIS短波反照率验证与分析[J].遥感技术与应用, 27(5):735-739.
[43]肖登攀, 陶福禄, Moiwo J P, 2011.全球变化下地表反照率研究进展[J].地球科学进展, 26(11):1217-1224.
[44]颜宏, 魏丽, 陈玉春, 等, 1987.地表反照率和土壤含水量的综合估算及其在地面加热场计算中的影响[J].高原气象, 6(2), 255-266.
[45]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社.
[46]于涵, 张杰, 刘诗梦, 2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象, 37(1):106-122. DOI:10.7522/j. issn. 1000-0534.2017.00045.
[47]余予, 陈洪滨, 夏祥鳌, 等, 2010.青藏高原纳木错站地表反照率观测与MODIS资料的对比分析[J].高原气象, 29(2):260-267.
[48]章基嘉, 朱抱真, 朱福康, 等, 1988.青藏高原气象学进展[M].北京:科学出版社.