[1]Bonan G B, 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces[J]. Journal of Climate, 8(11):2691-2704.
[2]Doberschütz S, Frenzel P, Haberzettl T, et al, 2014. Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China)[J]. Journal of Paleolimnology, 51(2):1-14.
[3]Hostetler S W, Bartlein P J, 1990.Simulation of lake evaporation with application to modeling lake level variation of Harney-Malheur Lake, Oregon[J]. Water Resource Research, 26(10):2603-2613.
[4]Hostetler S W, Bates G T, Giorgi F, 1993. Interactive coupling of a lake thermal model with a regional climate model[J]. Journal of Geophysical Research, 98(D3):5045-5057.
[5]Hostetler S W, Giorgi F, Bates G T, 1994. Lake-atmosphere feedbacks associated with Paleolakes Bonneville and Lahontan[J]. Science, 263(5417):665.
[6]Huang L, Wang J B, Zhu L P, et al, 2017. The warming of large lakes on the Tibetan Plateau:Evidence from a lake model simulation of Nam Co, China, during 1979-2012[J]. Journal of Geophysical Research:Atmospheres, 122(24):13095-13107.
[7]Hulley G C, Hook S J, 2012. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product[J], J. Geophys. Res., 117:D20117. DOI:10.1029/2012JD018102.
[8]Gu H P, Jin J M, Wu Y H, et al, 2015. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J]. Climatic Change, 129(3/4):471-483.
[9]Kalnay E, Kanamitsu M, Kistler R, et al, 1996. The NCEP/NCAR 40 years reanalysis project[J]. Bulletin of the American Meteorological Society, 77(3):437-471.
[10]Ke C Q, Tao A Q, J X. 2013. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager:1978 to 2013[J]. Journal of Applied Remote Sensing, 7(1):073477. https://doi.org/10.1117/1.Jrs.7.073477.
[11]Lei Y B, Yang K, Wang B B, et al, 2014. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 125(2):281-290.
[12]Li Z G, Lv S H, Ao Y H, et al, 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau[J]. Atmospheric Research, 155:13-25.
[13]La Z, Yang K, Wang J B, et al, 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J]. Journal of Geophysical Research:Atmosphere, 121:7578-579.
[14]Wan Z, 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products[J]. Remote Sensing of Environment, 112(1):59-74.
[15]Wan Z, Zhang Y, Zhang Q, et al, 2004. Quality assessment and validation of the MODIS global land surface temperature[J]. International Journal Remote Sensing, 25(1):261-274.
[16]Wang B B, Ma Y M, Chen X L, et al, 2015. Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau[J]. Journal of Geophysical Research:Atmosphere, 120(24):12327-12344. DOI:10.1002/2015JD023863.
[17]Wen L J, Lü S H, Zhao L, et al, 2015. Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River Source Region on the Tibetan Plateau[J]. Advances in Meteorology, 2015(D14). http://dx.doi.org/10.1155/2015/248031.
[18]Wen L J, Lü S H, Kirillin G, et al, 2016. Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J]. Tellus A, 68:31091.
[19]Yang K, He J, Tang W J, et al, 2010.On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 150(1), 38-46.
[20]Zhang G Q, Yao T D, Piao S L, et al, 2017. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades[J]. Geophysical Research Letters, 44:252-260.
[21]Zhang G Q, Yao T D, Xie H J, et al, 2014a. Lakes' state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 59(24):3010-3021.
[22]Zhang G Q, Yao T D, Xie H J, et al, 2014b. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J], Journal of Geophysical Research:Atmosphere, 119(14):8552-8567.
[23]方楠, 阳坤, 拉珠, 等, 2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3):610-618. DOI:10.7522/j. issn. 1000-0534.2016.00038.
[24]古红萍, 沈学顺, 金继明, 等, 2013.一维热扩散湖模式在太湖的应用研究[J].气象学报, 71(4):719-730.
[25]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j. issn. 1000-0534.2016.00125.
[26]何杰, 2010.中国区域高时空分辨率气象要素数据集的建立[D].北京: 中国科学院大学, 1-77.
[27]李建, 宇如聪, 陈昊明, 等, 2010.对三套再分析资料中国大陆地区夏季降水量的评估分析[J].气象, 36(12):1-9.
[28]闵文彬, 李跃清, 周纪, 2015.青藏高原东侧MODIS地表温度产品验证[J].高原气象, 34(6):1511-1516. DOI:10.7522/j. issn. 1000-0534.2014.00082.
[29]苏东生, 胡秀清, 文莉娟, 等, 2018.青海湖热力状况对气候变化响应的数值研究[J].高原气象, 37(2):394-405. DOI:10.7522/j. issn. 1000-0534.2017.00069.
[30]唐恬, 王磊, 文小航, 2013.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土, 35(6):1462-1473.
[31]王苏民, 窦鸿身, 1998.中国湖泊志[M].北京:科学出版社, 398-476.
[32]王明达, 侯居峙, 类延斌, 2014.青藏高原不同类型湖泊温度季节性变化及其分类[J].科学通报, 59(31):3095-3103. DOI10.1007/s11434-014-0588-8.
[33]肖宇, 谢淑云, 王明达, 等, 2015.青藏高原班公错与达则错水温时间序列分形特征[J].地质科技情报, 34(6):200-206.
[34]谢爱红, 秦大河, 任贾文, 等, 2007. NCEP/NCAR再分析资料在珠穆朗玛峰-念青唐古拉山脉气象研究中的可信性[J].地理学报, 62(3):268-278.
[35]许鲁君, 刘辉志, 2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报, 73(4):789-802.
[36]游庆龙, 康世昌, 李潮流, 等, 2009. NCEP/NCAR再分析资料在纳木错流域湖泊/冰川区适用性分析[J].气象, 35(5):66-73.
[37]朱智, 师春香, 张涛, 等, 2018.四套再分析土壤湿度资料在中国区域的适用性分析[J].高原气象, 37(1):240-252. DOI:10.7522/j. issn. 1000-0534.2017.00033.
[38]赵天保, 符淙斌, 2009.几种再分析地表气温资料在中国区域的适用性评估[J].高原气象, 28(3):594-606.