论文

干旱气候条件下多种潜在蒸发量估算方法对比研究

  • 焦丹丹 ,
  • 吉喜斌 ,
  • 金博文 ,
  • 赵丽雯 ,
  • 张靖琳
展开
  • 中国生态系统研究网络临泽内陆河流域研究站/中国科学院生态水文与流域科学重点实验室/中国科学院西北生态环境资源研究院, 甘肃 兰州 730000;中国科学院大学, 北京 100049

收稿日期: 2017-12-23

  网络出版日期: 2018-08-28

基金资助

国家重点研发计划项目(2017YFC0504303);国家自然科学基金项目(41771041,41501044,41271036)

Comparison of Different Methods for Estimating Potential Evaporation in an Arid Environment

  • JIAO Dandan ,
  • JI Xibin ,
  • JIN Bowen ,
  • ZHAO Liwen ,
  • ZHANG Jinglin
Expand
  • Linze Inland River Basin Research Station; CERN/Key Laboratory of Ecohydrology and Watershed Science, Chinese Academy of Sciences/Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-12-23

  Online published: 2018-08-28

摘要

潜在蒸发量表征局地大气蒸发能力,是研究陆面过程和水文循环的关键参量。基于中国科学院临泽内陆河流域研究站2015-2016年实测气象数据,对比分析了综合法、辐射法和温度法共10种潜在蒸发量计算公式在河西走廊中段干旱气候条件下的差异,并将计算结果与台站内E601型和Φ20型蒸发皿记录的蒸发量数据进行了统计分析。结果表明:(1)影响E601型和Φ20型蒸发量的气象因素主要为饱和水气压差、净辐射和温度;(2)两种蒸发皿折算系数(ETp-E601/ETp-Φ20)的算术平均法和一元线性回归法计算值分别为0.65和0.62;(3)总体上综合法最适用,其次是辐射法,基于温度的各方法适用性最差;(4)综合法中FAO-56法最优,与E601型蒸发皿值拟合值为1.02(R2=0.70);其次是基于辐射的Doorenbos-Pruitt法,与Φ20型蒸发皿值拟合值为0.78(R2=0.85)。以上研究结果为估算我国西北干旱区及类似环境下潜在蒸发量提供了方法上的借鉴。

本文引用格式

焦丹丹 , 吉喜斌 , 金博文 , 赵丽雯 , 张靖琳 . 干旱气候条件下多种潜在蒸发量估算方法对比研究[J]. 高原气象, 2018 , 37(4) : 1002 -1016 . DOI: 10.7522/j.issn.1000-0534.2018.00048

Abstract

The potential evaporation indicates the atmospheric evaporative demand under some specific conditions and is one of the key parameters involved in land surface process and hydrological cycle. Combined with the meteorological data and pan evaporation from 2015 to 2016 in the Linze Inland River Basin Research Station, Chinese Academy of Sciences, We selected a total of 10 methods derived from the well-known radiation-based, temperature-based, and combination methods to estimate the potential evaporation in the middle regions of the Hexi Corridor, northwest China. We compared and analyzed the differences of methods in an arid environment and the results were compared with the data from E601 and Φ20 evaporation pan. The principal results indicated that:(1) We analyzed the relationship between evaporation and meteorological factors and found that the main meteorological factors affecting the evaporation were vapor pressure deficit, net radiation and temperature. (2) We used two methods to calculate conversion coefficients of pan. The arithmetic mean method of the conversion coefficients of pan were 0.65 and the linear regression method of the conversion coefficients of pan were 0.62. (3) The differences of the calculated values are mainly due to the value of different aerodynamic terms and radiation terms. Every method is based on a specific regional and climatic background and the parameters are also calculated based on experience. The methods need to be corrected when used in other regions. In general, the combination methods are most applicable in this region, followed by the radiation-based methods, and the temperature-based methods have the worst applicability. (4) In the combination methods, the results of the FAO-56 method was the best and the fitting value of E601 evaporation pan was 1.02 (R2 was 0.70), followed by the radiation-based, the results of the Doornbos-Pruitt method fit well with the Φ20 evaporation pan and the fitting value was 0.78 (R2 was 0.85). These provide a reference for estimating evaporation simply and accurately with the help of evaporation pan. In addition, the Blaney-Criddle method and the Hargreaves-Samani method were also fit for calculating potential evaporation in this region. The above results provide support for the accurate estimation of evaporation in regions where the climatic data were insufficient. And they also provide a methodological reference for calculating potential evaporation in the arid or similar conditions to our study site.

参考文献

[1]Allen R G, Pereira L S, Raes D, et al, 1998. Crop evapotranspiration:Guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56.[M]. Rome, Italy Allen:Food and Agriculture Organization of the United Nations (FAO).
[2]Blaney H F, Criddle W D, 1950. Determining water requirements in irrigated areas from climatological and irrigation data[J]. US Department of Agriculture, Soil Conservation Service, 48.
[3]Choudhury B J, 1997. Global pattern of potential evaporation calculated from the Penman-Monteith equation using satellite and assimilated data[J]. Remote Sens Environ, 61(1):64-81.
[4]Donohue R J, Mcvicar T R, Roderick M L, 2010. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate[J]. J Hydrol, 386(1/4):186-197.
[5]Doorenbos J, 1992. Crop water requirements[J]. FAO Irrigation & Drainage Paper Rome, 24:322-334.
[6]Granger R J, 1989. An examination of the concept of potential evaporation[J]. J Hydrol, 111(1/4):9-19.
[7]Hargreaves G H, Samani Z A, 1982. Estimating potential evapotranspiration[J]. Journal of the Irrigation & Drainage Division, 108(3):225-230.
[8]Jensen M E, Haise H R, 1963. Estimating evapotranspiration from solar radiation[J]. Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage Division, 89:15-41.
[9]Jensen M E, Burman R D, Allen R G, 1990. Evapotranspiration and irrigation water requirements:ASCE-Manuals and reports on engineering practice No. 70[M]. New York:The American Society.
[10]Lang D, Zheng J, Shi J, et al, 2017. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith Method in southwestern China[J]. Water, 9(10):734.
[11]Lu J, Sun G, Mcnulty S G, et al, 2005. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States[J]. Journal of the American Water Resources Association, 41(3):621-633.
[12]Maeda E E, Wiberg D A, Pellikka P K E, 2011. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya[J]. Appl Geography, 31(1):251-258.
[13]Mahrt L, Ek M, 1984. The influence of atmospheric stability on potential evaporation[J]. J Appl Meteor, 23(2):222-234.
[14]Makkink G F, 1957. Testing the Penman Formula by means of lysimeters[J]. J Inst Water Engineers, 11(3):277-288.
[15]Penman H L, 1948. Natural evaporation from open water, hare soil and grass[J]. Proc Roy Soc London, 193(1032):120-145.
[16]Priestley C H B, Taylor R J, 1972. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Mon Wea Rev, 100(2):81-92.
[17]Rahimikhoob A, Hosseinzadeh M, 2014. Assessment of Blaney-Criddle equation for calculating reference evapotranspiration with NOAA/AVHRR data[J]. Water Resources Management, 28(10):3365-3375.
[18]Roderick M L, Rotstayn L D, Farquhar G D, et al, 2007. On the attribution of changing pan evaporation[J]. Geophys Res Lett, 34(34):251-270.
[19]Sasireka K, Reddy C J M, Reddy C C, et al, 2017. Evaluation and recalibration of empirical constant for estimation of reference crop evapotranspiration against the modified Penman Method[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing.
[20]Snyder R L, 1993. Equation for evaporation pan to evapotranspiration conversions[J]. Journal of Irrigation & Drainage Engineering, 118(6):977-980.
[21]Thornthwaite C W, 1948. An approach toward a rational classification of climate[J]. Geograp Rev, 38(1):55-94.
[22]Trajkovic S, Kolakovic S, 2009. Evaluation of reference evapotranspiration equations under humid conditions[J]. Water Resources Management, 23(14):3057-3067.
[23]Turc L, 1961. Evaluation de besoins en eau d'irrigation, évapotranspi-ration potentielle[J]. Ann Agron, 12(1):13-49.
[24]V?r?smarty C J, Federer C A, Schloss A L, 1998. Potential evaporation functions compared on US watersheds:Possible implications for global-scale water balance and terrestrial ecosystem modeling[J]. J Hydrol, 207(3/4):147-169.
[25]Wigmosta M S, Vail L W, Lettenmaier D P, 1994. A distributed hydrology-vegetation model for complex terrain[J]. Water Resour Res, 30(6):1665-1679.
[26]Xu C Y, Singh V P, 2001. Evaluation and generalization of temperature-based methods for calculating evaporation[J]. Hydrological Processes, 15(2):305-319.
[27]Xu C Y, Singh V P, 2002. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland[J]. Water Resources Management, 16(3):197-219.
[28]Xu C Y, Singh V P, 2005. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions[J]. J Hydrol, 308(1):105-121.
[29]Yates D N, 1997. Approaches to continental scale runoff for integrated assessment models[J]. J Hydrol, 201(1):289-310.
[30]Zheng H, Liu X, Liu C, et al, 2009. Assessing contributions to pan evaporation trends in Haihe River Basin, China[J]. J Geophys Res, 114(D24):144-153.
[31]Chen B L, Zuo H C, Gao X Q, 2014. Effect of meteorological factors on pan evaporation in arid region[J]. Plateau Meteor, 33(5):1251-1261. DOI:10.7522/j.issn. 1000-0534.2013.00060.<br/>陈伯龙, 左洪超, 高晓清, 2014.干旱区气象因子对蒸发皿蒸发量的影响[J].高原气象, 33(5):1251-1261.
[32]Chen B L, Zuo H C, Gao X Q, et al, 2017. Study on pan evaporation and energy change process by micro-meteorological method[J]. Plateau Meteor, 36(1):87-97. DOI:10.7522/j.issn. 1000-0534.2016.00021.<br/>陈伯龙, 左洪超, 高晓清, 等, 2017.蒸发皿蒸发及能量变化过程的微气象观测研究[J].高原气象, 36(1):87-97.
[33]Gao G L, Feng Q, Zhang X Y, et al, 2017. Review on modeling evapotranspiration of land surface based on the evapotranspiration models and micro-meteorological data[J]. Plateau Meteor, 36(6):1630-1637. DOI:10.7522/j.issn. 1000-0534.2016.00115.<br/>高冠龙, 冯起, 张小由, 等, 2017.蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J].高原气象, 36(6):1630-1637.
[34]Guo C L, Ma Y M, Ma W Q, et al, 2017. Relationship between the actual evapotranspiration and pan evaporation in the Gobi land surface of the Qomolangma region of the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):79-86. DOI:10.7522/j.issn. 1000-0534.2016.00020.<br/>郭晨露, 马耀明, 马伟强, 等, 2017.青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究[J].高原气象, 36(1):79-86.
[35]Ji X B, Kang E S, Zhao W Z, et al, 2005. Analysis on supply and demand of water resources and evaluation of the security of water resources in irrigation region of the middle reaches of Heihe River, Northwest China[J]. Scientia Agricultura Sinica, 38(5):974-982.<br/>吉喜斌, 康尔泗, 赵文智, 等, 2005.黑河中游典型灌区水资源供需平衡及其安全评估[J].中国农业科学, 38(5):974-982.
[36]Liu B, Ma Z G, Ding Y G, 2006. Characteristics of the changes in pan evaporation over northern China during the past 45 years and the relations to environment factors[J]. Plateau Meteor, 25(5):840-848.<br/>刘波, 马柱国, 丁裕国, 2006.中国北方近45年蒸发变化的特征及与环境的关系[J].高原气象, 25(5):840-848.
[37]Liu C M, Sun R, 1999. Ecological aspects of water cycle:Advances in soil-vegetation-atmosphere of energy and water fluxes[J]. Adv Waterence, 10(3):251-259.<br/>刘昌明, 孙睿, 1999.水环境的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展, 10(3):251-259.
[38]Liu C M, Zhang D, 2011. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 66(5):579-588.<br/>刘昌明, 张丹, 2011.中国地表潜在蒸散发敏感性的时空变化特征分析[J].地理学报, 66(5):579-588.
[39]Qian Z A, Song M H, Wu T W, et al, 2017. Review on advances in world dryland climate research(Ⅱ):Main investigation progress[J]. Plateau Meteor, 36(6):1457-1476. DOI:10.7522/j.issn. 1000-0534.2017.00076.<br/>钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J].高原气象, 36(6):1457-1476.
[40]Ren P C, 2013. Analysis of different evaporation pans and long term trend of 20 cm pan evaporation in northern china in winter[D]. Lanzhou: Lanzhou University.<br/>任鹏程, 2013. 不同蒸发皿比较及中国北方冬季20cm口径蒸发皿蒸发量变化趋势分析[D]. 兰州: 兰州大学.
[41]Wang M, Wang J B, Na J K, 2004. Analysis on test of the surface evaporation for the E-601 type of evaporator[J]. Journal of Heilongjiang Hydraulic Engineering College, 31(3):10-12.<br/>王梅, 王建波, 那景坤, 2004. E-601型蒸发器水面蒸发实验分析[J].黑龙江大学工程学报, 31(3):10-12.
[42]Aydaraili X, Huang M, 2011. Comparative analysis of observed data between E-601 evaporator and 20 cm pan in Tianshan River Basin[J]. J China Hydrol, 31(4):76-80.<br/>夏依木拉提·艾依达尔艾力, 黄梅, 2011.天山西部地区E-601型蒸发器与20cm口径蒸发皿观测资料对比分析[J].水文, 31(4):76-80.
[43]Xie X Q, Wang L, 2007. Changes of potential evaporation in Northern China over the past 50 years[J]. J Natural Resour, 22(5):683-691.<br/>谢贤群, 王菱, 2007.中国北方近50年潜在蒸发的变化[J].自然资源学报, 22(5):683-691.
[44]Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10.7522/j.issn. 1000-0534.2016.00012.<br/>谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12.
[45]Yin Y H, Wu S H, Dai E F, 2010. Determining factors in potential evapotranspiration changes over China in the period 1971-2008[J]. Sci Bull, 55(22):2226-2234.<br/>尹云鹤, 吴绍洪, 戴尔阜, 2010.1971-2008年我国潜在蒸散时空演变的归因[J].科学通报, 55(22):2226-2234.
[46]Zhang S F, Wang C C, Meng X J, et al, 2013. Evaporation study in Beijing Section of the Yongding River[J]. Progress in Geography, 32(4):580-586.<br/>张士锋, 王翠翠, 孟秀敬, 等, 2013.永定河北京段蒸散发研究[J].地理科学进展, 32(4):580-586.
[47]Zhang Y Z, 1999. Survey of experimental study on water surface evaporation in China[J]. Yangtze River, 30(3):6-8.<br/>张有芷, 1999.我国水面蒸发实验研究概况[J].人民长江, 30(3):6-8.
[48]Zhu C H, 1982. A further discussion on the climatological calculating method of total radiation(One)[J]. Journal of Nanjing Institute of Meteorology, (1):196-206.<br/>祝昌汉, 1982.再论总辐射的气候学计算方法(一)[J].大气科学学报, (1):196-206.
[49]Zuo D P, Xu Z X, Liu Z F, 2009. Comparison of temperature-based methods for estimating potential evapotranspiration in the arid region of Northwest China[J]. J Arid Land Resour Environ, 23(10):123-131.<br/>左德鹏, 徐宗学, 刘兆飞, 2009.基于气温的潜在蒸散发量估算方法在我国西北干旱地区的应用比较[J].干旱区资源与环境, 23(10):123-131.
[50]Zuo H C, Li D L, Hu Y Q, et al, 2005. Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China[J]. Sci Bull, 50(11):1125-1130.<br/>左洪超, 李栋梁, 胡隐樵, 等, 2005.近40 a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系[J].科学通报, 50(11):1125-1130.
文章导航

/