论文

加密FY-2G云导风质量评估及其在GRAPES_RAFS系统中的应用分析

  • 万晓敏 ,
  • 韩威 ,
  • 田伟红 ,
  • 何晓欢
展开
  • 国家气象中心, 北京 100081

收稿日期: 2017-05-05

  网络出版日期: 2018-08-28

基金资助

中国气象局数值天气预报(GRAPES)专项(GRAPES-FZZX-2017-05);公益性行业(气象)科研专项(GYHY201506002)

The Application of Intensive FY-2G AMVs in GRAPES_RAFS

  • WAN Xiaomin ,
  • HAN Wei ,
  • TIAN Weihong ,
  • HE Xiaohuan
Expand
  • National Meteorological Centre, Beijing 100081, China

Received date: 2017-05-05

  Online published: 2018-08-28

摘要

采用2016年7月国家卫星气象中心提供的加密FY-2G资料,选用美国国家环境预报中心的FNL全球分析资料(Final Operational Global Analysis)为参考场,根据不同质量标识码QI(Quality Indicator)对其进行质量评估,并基于GRAPES(Global and Regional Assimilation and Prediction System)模式的GRAPES_RAFS(Rapid Analysis and Forecast System)系统分别进行了个例试验和连续试验。结果表明,QI ≥ 80的加密FY-2G资料质量最好,相较于其他QI阈值,其偏差和均方根误差最小;对比业务使用的FY-2G红外通道云导风资料,加密FY-2G红外通道云导风的U分量偏差更接近正态分布。对2016年7月2-3日强降水个例进行了三组对比试验,结果表明:同化加密FY-2G红外通道云导风资料对850 hPa高度场和风场分析有一定的调整作用,对24 h降水强度和落区预报有一定改善。连续试验结果表明同化加密FY-2G红外通道云导风资料对高层风场改善明显,24 h降水预报检验反映出全国区域中雨到暴雨级别的降水ETS评分提高。

本文引用格式

万晓敏 , 韩威 , 田伟红 , 何晓欢 . 加密FY-2G云导风质量评估及其在GRAPES_RAFS系统中的应用分析[J]. 高原气象, 2018 , 37(4) : 1083 -1093 . DOI: 10.7522/j.issn.1000-0534.2017.00089

Abstract

Atmospheric Motion Vectors (AMVs) can supply plenty of useful information for numerical weather prediction.Statistical results demonstrate that the quality of intensive FY-2G Atmospheric Motion Vectors (AMVs) is best when the quality indicator (QI) is greater than 80.Therefor, it is necessary to evaluate intensive FY-2G AMVs for the analysis field and precipitation forecast in GRAPES (Global/Regional Assimilation Prediction System) at CMA.In this study, by using GRAPES_RAFS (Rapid Analysis and Forecast System), three contrast tests had been researched based on one rainstorm occurred from 2 to 3 July 2016.The results show that assimilation of intensive FY-2G AMVs have weak positive impacts on the 850 hPa wind and height analysis field.The 24 hours precipitation forecast results show positive contribution to rainfall intensity and location prediction when using intensive FY-2G AMVs.One-month experiments were conducted to examine the impact of assimilating intensive FY-2G AMVs, the results indicate that assimilating intensive FY-2G AMVs improves the wind analysis field, especially in high levels, and the precipitation forecasting scores for moderate rain to heavy rain are improved with using intensive FY-2G AMVs.

参考文献

[1]Berger H, Langland R, Velden C S, et al, 2011.Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western north Pacific during TPARC/TCS-08[J].J Appl Meteor Climatol, 50(11):2309-2318.
[2]Baker N, Langland R, Pauley P M, et al, 2012. The impact of satellite atmospheric motion vectors in the US Navy Global Data Assimilation System-NWP Results[C]//Extended abstract//llth In-ternational Winds Workshop, Auckland: University of Auckland, New Zealand.
[3]Marshall J L, Seecamp R, Xiao Y, et al, 2013.The operational generation of continuous winds in the australian region and their assimilation with 4DVAR[J].Wea Forecasting, 28(2):504-514.
[4]Sato Y, Kumabe R, 2004. A caser study of hourly AMV assimilation with JMA-MSM[J/OL]. Proceedings of 7th IWW, 2004. [2017-04-29]. <a href="http://citeseerx.ist.psu.edu/viewdoc/download?DOI=10.1.1.564.1913&rep=rep1&type=pdf" target="_blank">http://citeseerx.ist.psu.edu/viewdoc/download?DOI=10.1.1.564.1913&rep=rep1&type=pdf</a>.
[5]Tomassini M, Kelly G, Saunders R, 1999.Use and impact of satellite atmospheric motion winds on ECMWF analyses and forecasts[J].Mon Wea Rev, 127(6):971-986.
[6]Velden C S, Olander T L, Wanzong S, 1998.The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995.Part Ⅰ:Dataset methodology, description, and case analysis[J].Mon Wea Rev, 126(5):1202-1218.
[7]Wu T C, Liu H, Majumdar S J, et al, 2014.Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity[J].Mon Wea Rev, 142(1):49-71.
[8]Bi B G, Lin J, Xu J, 2004.Application of satellite data in operational weather forecast[J].Meteor Mon, 30(11):19-23.<br/>毕宝贵, 林建, 徐晶, 2004.气象卫星资料在天气预报分析业务中的应用[J].气象, 30(11):19-23.
[9]Chen J, Xue J S, Yan H, 2005.A new initial perturbation method of ensemble meso-scale heavy rain prediction[J].Chinese J Atmos Sci, 29(5):717-726.<br/>陈静, 薛纪善, 颜宏, 2005.一种新型的中尺度暴雨集合预报初值扰动方法研究[J].大气科学, 29(5):717-726.
[10]Feng W, Wan Q L, Chen Z T, et al, 2008.Hourly assimilation of cloud motion winds and its impact on torrential rain forecast[J].Acta Meteor Sinica, 66(4):500-512.<br/>冯文, 万齐林, 陈子通, 等, 2008.逐时云迹风资料同化对暴雨预报的模拟试验[J].气象学报, 66(4):500-512.
[11]He F, Shen T L, He Z, et al, 2007.Study on model terrain parameter modification using cloud-derived wind in the MM5 Adjoint-Model assimilation system[J].Plateau Meteor, 26(2):300-308.<br/>何芬, 沈桐立, 贺哲, 等, 2007.伴随同化系统中用云导风修正模式地形的试验[J].高原气象, 26(2):300-308.
[12]Hui W, Guo Q, Wu Q, et al, 2016.Image quality evaluation of FY-2G meteorological satellite[J].Progress Geophys, 31(5):1902-1910.<br/>惠雯, 郭强, 吴琼, 等, 2016.FY-2G静止气象卫星遥感图像质量评价[J].地球物理学进展, 31(5):1902-1910.
[13]Li Y, Guo J X, Cao Y C, et al, 2018.Compare and analyze FY-2G cloud products to ground-based manual observed cloud amount[J].Plateau Meteor, 37(2):514-523.DOI:10.7522/j.issn.1000-0534.2017.00027.<br/>李娅, 郭建侠, 曹云昌, 等, 2018.FY-2G云量产品与地面观测云量对比分析[J].高原气象, 37(2):514-523.
[14]Quan W Q, He L F, 2016.Analysis of the July 2016 atmospheric circulation and weather[J].Meteor Mon, 42(10):1283-1288.<br/>权婉晴, 何立富, 2016.2016年7月大气环流和天气分析[J].气象, 42(10):1283-1288.
[15]Ren S L, Jiang J Y, Xu J M, 2014.Application of upper troposphere circulation revealed by the satellite IR3 channel to heavy rainfall events analysis in the east side of south Asia high[J].Meteor Mon, 40(6):697-705.<br/>任素玲, 蒋建莹, 许健民, 2014.卫星水汽通道探测所揭示的高空流场在南亚高压东侧强降水分析中的应用[J].气象, 40(6):697-705.
[16]Wang D L, Liang X D, Duan Y H, 2005.Impact of four dimensional variational data assimilation of the cloud drift wind data on tropical cyclone track numerical forecast[J].Acta Meteor Sinica, 63(3):351-358.<br/>王栋梁, 梁旭东, 端义宏, 2005.云迹风在热带气旋路径数值预报中的应用研究[J].气象学报, 63(3):351-358.
[17]Wan X M, Tian W H, Han W, et al, 2017.The evaluation of FY-2E reprocessed IR AMVs in GRAPES[J].Meteor Mon, 43(1):1-10.<br/>万晓敏, 田伟红, 韩威, 等, 2017.FY-2E云导风的算法改进及其在GRAPES中的同化应用研究[J].气象, 43(1):1-10.
[18]Xue J S, 2007.Weather forecast and numerical weather prediction[J].Meteor Mon, 33(8):3-11.<br/>薛纪善, 2007.和预报员谈数值预报[J].气象, 33(8):3-11.
[19]Xu J M, Zhang Q S, Fang X, 1997.Height assignment of cloud motion winds with infrared and water vapour channels[J].Acta Meteor Sinica, 55(4):408-417.<br/>许健民, 张其松, 方翔, 1997.用红外和水汽两个通道的卫星测值指定云迹风的高度[J].气象学报, 55(4):408-417.
[20]Xu J M, Zhang Q S, 2006.Status review on atmospheric motion vectors-derivation and application[J].J Appl Meteor Sci, 17(5):574-582.<br/>许健民, 张其松, 2006.卫星导风推导和应用综述[J].应用气象学报, 17(5):574-582.
[21]Xu J M, Yang J, Zhang Z Q, et al, 2010.Chinese meteorological satellites, achievements and applications[J].Meteor Mon, 36(7):94-100.<br/>许健民, 杨军, 张志清, 等, 2010.我国气象卫星的发展与应用[J].气象, 36(7):94-100.
[22]Xu Z F, Hao M, Zhu L J, et al, 2013.On the research and development of GRAPES_RAFS[J].Meteor Mon, 39(4):466-477.<br/>徐枝芳, 郝民, 朱立娟, 等, 2013.GRAPES_RAFS系统研发[J].气象, 39(4):466-477.
[23]Yang J, 2008.Development and applications of China's Fengyun (FY) meteorological satellite[J].Spacecraft Engineering, 17(3):23-28.<br/>杨军, 2008.我国"风云"气象卫星及其应用的回顾与展望[J].航天器工程, 17(3):23-28.
[24]Zhou B, Xu H M, Wu G X, et al, 2002.Numerical simulation of CMWDA with its impacting on torrential rain forecast[J].Acta Meteor Sinica, 60(3):309-317.<br/>周兵, 徐海明, 吴国雄, 等, 2002.云迹风资料同化对暴雨预报影响的数值模拟[J].气象学报, 60(3):309-317.
[25]Zhuang Z R, Xue J S, 2004.Assimilation of cloud-derived winds and its impact on typhoon forecast[J].J Trop Meteor, 20(3):225-236.<br/>庄照荣, 薛纪善, 2004.云迹风资料的三维变分同化及对台风预报的影响试验[J].热带气象学报, 20(3):225-236.
文章导航

/