In order to provide scientific guidance for lightning protection design of transmission lines, the Agrawal model telegraph equation's time domain form was deduced as the theoretical foundation, and the Finite-Difference Time-Domain (FDTD) method was used as the computational method, the double Heidler function was used to simulate the base current of the return stroke channel, the improved linear attenuated transmission line (MTLL) return stroke model was selected to calculate the lightning induced voltage on the overhead transmission lines.The effectiveness of the above method is proved by comparative analysis.Then the influences of position, height and soil conductivity on lightning induced voltage were studied.The results show that the horizontal electric field component and the vertical electric field component in the lightning electromagnetic pulse are very important in the coupling mechanism.When the observation point moves from the midpoint of the line to the endpoint, the induced voltage decreases gradually, and the bipolar characteristics of the waveform become more and more obvious, this may be related to the attenuation of the path.The midpoint voltage and the forward voltage of the endpoint increase with the height of the transmission line.Therefore, the designer can reduce the line height to reduce the damage of lightning coupling voltage to the transmission line.With the decrease of soil electrical conductivity, the midpoint voltage increases, and the endpoint voltage decreases.In addition, the response of the scattering voltage component to the soil conductivity changes significantly, while the incident voltage component is not affected.
[1]Agrawal A, Price H, Gurbaxani S, 1980.Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J].IEEE Trans Antennas Propag, 18(2):432-435.
[2]Baba Y, Rakov V A, 2009.Electric and magnetic fields predicted by different electromagnetic models of the lightning return stroke versus measured fields[J].IEEE Trans Electromagn Compat, 51(3):479-487.
[3]Barker P P, Short T A, Eybert-Berard A, et al, 1996.Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightning flashes[J].IEEE Trans Power Del, 11(2):980-995.
[4]Cooray V, 1994.Propagation effects on the lightning generated electromagnetic fields for homogeneous and mixed sea-land paths[J].J Geophys Res:Atmospheres, 99(D5):10641-10652.
[5]Cooray V, 2002.Some considerations on the Cooray-Rubinstein formulation used in deriving the horizontal electric field of lightning return stroke over finitely conducting ground[J].IEEE Trans Electromagn Compat, 44(4):560-566.
[6]Fusio M, 1990.FDTD algorithm in curvilinear coordinates[J].IEEE Trans Antrnnas Propagat, 38(1):76-89.
[7]Ren H M, Zhou B H, Yu T B, et al, 2005. Calculation of lightning-induced voltage on an overhead line[C]//Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005. IEEE International Symposium on IEEE, 1: 748-751.
[8]Mur G, 1981.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J].IEEE Trans Electromagn Compat, 23(4):377-382.
[9]Orlandi A, Paul C R, 1996.FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads[J].IEEE Trans Electromagn Compat, 38(3):388-398.
[10]Paulino J O S, Barbosa C F, Lopes I J S, et al, 2011.The peak value of lightning-induced voltages in overhead lines considering the ground resistivity and typical return stroke parameters[J].IEEE Trans Power Del, 26(2):920-927.
[11]Rachidi F, 1993.Formulation of field-to-transmission line coupling equations in terms of magnetic excitation field[J].IEEE Trans Electromagn Compat, 35(3):404-407.
[12]Rubinstein M, 1996.An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate, and long range[J].IEEE Trans Electromagn Compat, 38(3):531-535.
[13]Sommerfeld A, 1909.Uber due Ausbreitung der Wellen in der drahtlosen telegraphic[J].Ann Phys, 28:665-736.
[14]Taylor C D, Satterwhite R C, Harrison C W, 1987.The response of a terminated two wire transmission line excited by a nonuniform electromagnetic field[J].IEEE Trans Antennas Propag, 13(11):987-989.
[15]Yang C S, Zhou B H, 2004.Calculation methods of electromagnetic fields very close to lightning[J].IEEE Trans Electromagn Compat, 46(1):133-141.
[16]Bian K, Chen W J, Li C R, et al, 2012.Calculation of lightning induced overvoltage on overhead distribution lines[J].Proc CSEE, 32(31):191-199.<br/>边凯, 陈维江, 李成榕, 等, 2012.架空配电线路雷电感应过电压计算研究[J].中国电机工程学报, 32(31):191-199.
[17]Bian K, Chen W J, Shen H B, et al, 2013.Protective effect of erecting ground wire on distribution line to lightning induced overvoltage[J].High Voltage Engineering, 39(4):993-999.<br/>边凯, 陈维江, 沈海滨, 等, 2013.配电线路架设地线对雷电感应过电压的防护效果[J].高电压技术, 39(4):993-999.
[18]Dai J J, Liu Y D, Jiang W J, 2016.Identification of back striking and shielding failure on transmission line based on time domain characteristics of traveling wave[J].Transctions of China Electrotechnical Society, 6(31):242-250.<br/>代杰杰, 刘亚东, 姜文娟, 2016.基于雷电行波时域特征的输电线路雷击类型辨识方法[J].电工技术学报, 6(31):242-250.
[19]Gao J G, Zhang Q L, Li D S, et al, 2013.Propagation effects of the rough surface on the lightning horizontal electric field[J].J Meteor Sci, 33(6):627-633.<br/>高金阁, 张其林, 李东帅, 等, 2013.粗糙表面对雷电水平电场影响的模拟研究[J].气象科学, 33(6):627-633.
[20]Gao J G, Li J X, Zhang Z, et al, 2017.Analysis and revision for formula of lightning induced voltage on overhead transmission line[J].J Meteor Sci, 37(6):845-850.<br/>高金阁, 李京校, 张仲, 等, 2017.架空传输线雷电感应电压计算公式分析与修订[J].气象科学, 37(6):845-850.
[21]Liu X D, Zhang Q L, Feng X Y, et al, 2014.Numerical calculation of lightning return stroke electromagnetic field coupling voltages on overhead line[J].Plateau Meteor, 33(4):1146-1153.DOI:10.7522/j.issn.1000-0534.2013.00089.<br/>刘晓东, 张其林, 冯旭宇, 等, 2014.地闪回击电磁场对架空线路耦合过电压的数值模拟[J].高原气象, 33(4):1146-1153.
[22]Liu Y X, Zhang G S, Wang Y H, et al, 2016.The VHF lightning radiation pulse power of observation and a thunderstorm charge structure preliminary analysis[J].Plateau Meteor, 35(6):1662-1670.DOI:10.7522/j.issn.1000-0534.2016.00051.<br/>刘妍秀, 张广庶, 王彦辉, 等, 2016.闪电VHF辐射源功率观测及雷暴电荷结构的初步分析[J].高原气象, 35(6):1662-1670.
[23]Xu L, Yao R, Wang X L, et al, 2017.Study of temporal-spatial distribution and variation characteristics of thunderstorm gales in Hunan[J].Plateau Meteor, 36(4):993-1000.DOI:10.7522/j.issn.1000-0534.2016.00088.<br/>许霖, 姚蓉, 王晓雷, 等, 2017.湖南省雷暴大风的时空分布和变化特征[J].高原气象, 36(4):993-1000.
[24]Zhang H, Wang D H, Lu W T, et al, 2012.A single-station-based 3D lightning channel imaging system using differential arrival time of thunder[J].Plateau Meteor, 31(1):209-217.<br/>章涵, 王道洪, 吕伟涛, 等, 2012.基于雷声到达时间差的单站闪电通道三维定位系统[J].高原气象, 31(1):209-217.
[25]Zhang Q L, Qie X S, 2003.Reconstruction of return stroke radiation field waveforms and estimation of cloud-to-ground discharges parameters[J].Plateau Meteor, 22(3):252-258.<br/>张其林, 郄秀书, 2003.地闪回击辐射场波形的重构及地闪放电参量的估算[J].高原气象, 22(3):252-258.