论文

黄河源区多、少雪年土壤冻融特征分析

  • 姚闯 ,
  • 吕世华 ,
  • 王婷 ,
  • 王俊锋 ,
  • 马翠丽
展开
  • 成都信息工程大学大气科学学院, 四川 成都 610225;中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;内蒙古包头市气象局, 内蒙古 包头 014030

收稿日期: 2018-09-07

  网络出版日期: 2019-06-28

基金资助

国家自然科学基金项目(41775016,91537214)

Analysis on Freezing-thawing Characteristics of Soil in High and Low Snowfall Years in Source Region of the Yellow River

  • YAO Chuang ,
  • Lü Shihua ,
  • WANG Ting ,
  • WANG Junfeng ,
  • MA Cuili
Expand
  • Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000, Gansu, China;Baotou Meteorological Service, Baotou 014030, Inner-Mongolia, China

Received date: 2018-09-07

  Online published: 2019-06-28

摘要

利用2011年10月至2017年12月黄河源区鄂陵湖野外观测数据,对比分析多雪年与少雪年土壤冻结与消融时间、土壤温湿度、地表能量分量的变化特征。结果表明:多雪年地表反照率偏高,净辐射偏低,地表感热输送偏低,土壤由热“源”转为热“汇”的时间晚于少雪年。积雪可减少土壤吸收辐射能量,减少地表感热通量,在土壤完全冻结期与消融期增大地表潜热通量,在完全冻结期,减少土壤向大气的热输送,在消融期,减少大气向土壤的热输送。积雪在冻结期有降温作用,使得多雪年土壤较早发生冻结,且同一时期土壤温度偏低;在完全冻结期有保温作用,使得土壤温度偏高;在消融期有保温(“凉”)作用,使得消融较晚,且同一时期土壤温度偏低。在整个积雪年内,多雪年浅层土壤湿度高于少雪年,积雪对浅层土壤有保湿作用。积雪使土壤开始冻结时间有所提前,开始消融的时间有所滞后,可延长该年土壤完全冻结持续天数。

本文引用格式

姚闯 , 吕世华 , 王婷 , 王俊锋 , 马翠丽 . 黄河源区多、少雪年土壤冻融特征分析[J]. 高原气象, 2019 , 38(3) : 474 -483 . DOI: 10.7522/j.issn.1000-0534.2018.00142

Abstract

Based on the field observation data in the source region of the Yellow River from October 2011 to December 2017, the characteristics of soil freezing-thawing duration, soil temperature and moisture, surface energy components in high snowfall year and low snowfall year were analyzed in this paper. The results show that the snowy year has higher albedo, lower net radiation, and lower surface heat transfer than the less snowfall year. The time of the snowy year from the heat "source" to the heat "sink" is later than the less snowfall year. Snow accumulation can reduce the radiant energy absorbed by the soil, reduce the sensible heat transfer on the surface, increase the surface latent heat transport during the frozen period and the thawing period of the soil, reduce the heat transfer from the soil to the atmosphere during the frozen period, and reduce the heat transfer from the atmosphere to the soil during the thawing period. The snow cover has a cooling effect in the freezing period, which makes the soil freeze earlier in the snowy years and the soil temperature is lower in the same period. It has the function of heat preservation in the frozen period, which makes the soil temperature higher in the snowy years. In the thawing period, it has the effect of heat preservation ("cooling"), which makes the ablation later and the soil temperature is low in the same period. During the whole freezing-thawing period, the shallow soil moisture in the snowy year is higher than that in the less snowy year, indicating that the snow has a moisturizing effect on the shallow soil. Snow accumulation makes the soil to start freeze earlier and the start of ablation later, which can extend the number of days that the soil is completely frozen.

参考文献

[1]Chen L T, Wu R G, 2000.Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationships to summer monsoon rainfall in China[J].Advances in Atmospheric Sciences, 17(1):18-30.
[2]Goodrich L E, 1982.The influence of snow cover on the ground thermal regime[J].Canadian Geotechnical Journal, 19(4):421-432.
[3]Gray D M, Toth B, Zhao L, et al, 2010.Estimating areal snowmelt infiltration into frozen soils[J].Hydrological Processes, 15(16):1827-1842.
[4]Iwata Y, Hayashi M, Suzuki S, et al, 2010.Effects of snow cover on soil freezing, water movement, and snowmelt infiltration:A paired plot experiment[J].Water Resources Research, 46(9):2095-2170.
[5]Liu G S, Wang G X, Chang H, et al, 2009.Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau[J].Journal of Glaciology & Geocryology, 31(1):89-95.
[6]Liu H Q, Sun Z B, Wang J, et al, 2004.A modeling study of the effects of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon[J].Advances in Atmospheric Sciences, 21(6):964-975.
[7]Liu X, Yanai M, 2002.Influence of Eurasian spring snow cover on Asian summer rainfall[J].International Journal of Climatology, 22(9):1075-1089.
[8]Madan N J, 2002.Snow ecology:An interdisciplinary examination of snow-covered ecosystems[J].Journal of Ecology, 61(1):87-87.
[9]Warrach K, Mengelkamp H T, Raschke E, 2001.Treatment of frozen soil and snow cover in the land surface model sewab[J].Theoretical & Applied Climatology, 69(1/2):23-37.
[10]Wen L, Nagabhata N, Shihua L, et al, 2013.Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models[J].Advances in Atmospheric Sciences, 30(5):1449-1460.
[11]Xiao Y, Zhao L, Ren L I, et al, 2010.The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau[J].Journal of Glaciology & Geocryology, 32(3):480-488.
[12]Zhang T, Tong B, Li S, 1985.Influence of Snow Cover on the Lower Limit of Permafrost in Altai Mountains[J].Journal of Glaciology & Geocryology, 7:57-64.
[13]Zhang Y, Li T, Wang B, 2004.Decadal change of the spring snow depth over the Tibetan Plateau:The associated circulation and influence on the East Asian summer monsoon[J].Journal of Climate, 17(14):2780-2793.
[14]边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象, 35(3):621-632.DOI:10.7522/j.issn.1000-0534.2016.00029.
[15]边晴云, 吕世华, 文莉娟, 等, 2017.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究, 34(4):906-911.
[16]常娟, 王根绪, 高永恒, 等, 2012.青藏高原多年冻土区积雪对沼泽、草甸浅层土壤水热过程的影响[J].生态学报, 32(23):7289-7301.
[17]陈渤黎, 2013.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].北京: 中国科学院研究生院.
[18]丁永建, 效存德, 2013.冰冻圈变化及其影响研究的主要科学问题概论[J].地球科学进展, 28(10):1067-1076.
[19]金会军, 王绍令, 吕兰芝, 等, 2010.黄河源区冻土特征及退化趋势[J].冰川冻土, 32(1):10-17.
[20]李燕, 闫家海, 张东峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2):317-324.DOI:10.7522/j.issn.1000-0534.2017.00040.
[21]刘华强, 孙照渤, 朱伟军, 2003.青藏高原积雪与亚洲季风环流年代际变化的关系[J].南京气象学院学报, 26(6):733-739.
[22]卢咸池, 罗勇, 1994.青藏高原冬春季雪盖对东亚夏季大气环流影响的数值试验[J].应用气象学报, 5(4):385-393.
[23]彭京备, 陈烈庭, 张庆云, 2005.青藏高原异常雪盖和ENSO的多尺度变化及其与中国夏季降水的关系[J].高原气象, 24(3):366-377.
[24]秦大河, 周波涛, 效存德, 2014.冰冻圈变化及其对中国气候的影响[J].气象学报, 72(5):869-879.
[25]唐恬, 王磊, 文小航, 2013.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土, 35(6):1462-1473.
[26]王澄海, 董文杰, 韦志刚, 2002.陆面模式中土壤冻融过程参数化研究进展[J].地球科学进展, 17(1):44-52.
[27]王澄海, 李燕, 王艺, 2015.北半球大气环流及其冬季风的年代际变化对青藏高原冬季降雪的影响[J].气候与环境研究, 20(4):421-432.
[28]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164.DOI:10.7522/j.issn.1000-0534.2016.00117.
[29]杨建平, 丁永建, 方一平, 等, 2015.冰冻圈及其变化的脆弱性与适应研究体系[J].地球科学进展, 30(5):517-529.
[30]杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报, 20(5):553-558.
[31]杨兴国, 秦大河, 秦翔, 2012.冰川/积雪-大气相互作用研究进展[J].冰川冻土, 34(2):392-402.
[32]张东, 余志豪, 1999.青藏高原冬春季积雪异常与我国夏季低温的关系[J].气象科学, 19(1):1-8.
[33]张娟, 徐维新, 王力, 等, 2018.三江源腹地玉树地区动态融雪过程及其与气温关系分析[J].高原气象, 37(4):936-945.DOI:10.7522/j.issn.1000-0534.2018.00001.
[34]章少卿, 1985.冬春季欧亚大陆雪盖面积与我国东部气温、降水的统计关系[J].科学通报, 30(15):1167-1170.
[35]朱玉祥, 丁一汇, 2007.青藏高原积雪对气候影响的研究进展和问题[J].气象科技, 35(1):1-8.
[36]左金清, 王介民, 黄建平, 等, 2010.半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J].高原气象, 29(4):840-848.
文章导航

/