论文

冬季西伯利亚高压的主要年际变化模态及其对东亚气温的影响

  • 朱红霞 ,
  • 陈文 ,
  • 冯涛 ,
  • 王林
展开
  • 云南大学资源环境与地球科学学院大气科学系, 云南 昆明 650091;中国科学院大气物理研究所季风系统研究中心, 北京 100190;中国科学技术大学地球和空间科学学院, 安徽 合肥 230026;云南大学低纬高原大气环境与边界层过程重点实验室, 云南 昆明 650091

收稿日期: 2018-10-09

  网络出版日期: 2019-08-28

基金资助

国家自然科学基金项目(41721004);云南大学云南省优秀青年培育项目(C176240209);云南大学资环学院科研基金项目(2015CG009)

Interannual Variations of Siberian High during Boreal Winter and Its Influence on East Asian Temperature

  • ZHU Hongxia ,
  • CHEN Wen ,
  • FENG Tao ,
  • WANG Lin
Expand
  • Department of Atmospheric Sciences, College of Resources Environment and Earth Sciences, Yunnan University, Kunming 650091, Yunnan, China;Monsoon System Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, China;School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China;Key laboratory of atmospheric environment and processes in the boundary layer over the low-latitudeplateau region, Department of atmospheric science, Yunnan University, Kunming 650091, Yunnan, China

Received date: 2018-10-09

  Online published: 2019-08-28

摘要

选取40°N-60°N,80°E-120°E的区域作为西伯利亚高压的主要活动区域,利用NCEP/NCAR月均海平面气压再分析资料,对该区域西伯利亚高压(Siberian High,SH)从1979-2017年共38个冬季(12月至次年2月)进行经验正交函数分解(Empirical Orthogonal Function,EOF)。结果表明,第1模态为全区一致的变化,第2模态为南北气压的反相变化关系,第3模态为东西部气压的反相变化关系,并且3个模态的时间序列都存在显著的年际变化。进一步对相关的大气环流和东亚气温异常的分析表明,第1模态相联系的大气环流在地面表现为海陆气压差的改变,500 hPa高度上东亚大槽强度的变化,200 hPa纬向风场上温带急流、副热带急流强度的变化,SH负位相时,东亚偏暖,SH正位相时,东亚偏冷;第2模态与北极涛动(Arctic Oscillation,AO)和北大西洋涛动(North Atlantic Oscillation,NAO)的变化有密切关系,在高度场上表现为一个准正压的南北环状模态,SH北强南弱时,环流场类似AO正位相,温带急流减弱,东亚东北部偏暖,SH北弱南强时,东亚东北部偏冷;而与第3模态相联系的大气环流主要出现在欧亚大陆局部区域,与北大西洋涛动(NAO)也存在一定的关联,SH东强西弱时,东亚北部偏暖,西南部偏冷,SH东弱西强时,东亚北部偏冷,西南部偏暖。

本文引用格式

朱红霞 , 陈文 , 冯涛 , 王林 . 冬季西伯利亚高压的主要年际变化模态及其对东亚气温的影响[J]. 高原气象, 2019 , 38(4) : 685 -692 . DOI: 10.7522/j.issn.1000-0534.2018.00116

Abstract

The dominant interannual variations of Siberian high (SH) during Boreal Winter in north Asia region (40°N-60°N, 80°E-120°E) are analyzed using empirical orthogonal function (EOF) decomposition based on NCEP/NCAR monthly mean sea level pressure data from 1979 to 2017. The results show that the first EOF mode present a uniform variation over the whole region, the second mode exhibit a north-south seesaw relationship in seal level pressure change, and the third mode show a west-east seesaw relationship. In addition, the principal component time series of the three dominant modes all indicate significant interannual changes. Further analysis of the relevant atmospheric circulation pattern and East Asian temperature anomaly associated with the first mode show that the atmospheric circulation is characterized by changes in sea-land pressure gradient and related changes in East Asian trough strength and subtropical jet intensity. When SH is in negative phase, East Asia is warmer than usual, on the contrary East Asia is colder when SH is in positive phase. The second mode of SH is closely related to changes in Arctic Oscillation (AO) and North Atlantic Oscillation (NAO), where the height field shows a quasi-positive pressure north-south annular mode. When SH is strong in the north and weak in the south, the circulation pattern is similar to the AO positive phase, weakened temperate jet stream lead to warmer condition in the northeastern part of East Asia, but when SH is weak in the south, the northeastern part of East Asia is colder. The atmospheric circulation associated with the third mode mainly occurs in the local area of Eurasia, and also has a certain relationship with the North Atlantic Oscillation (NAO). When SH is strong in the east and weak in the west, the east part of East Asia is warmer and the southwest part is colder. When SH is weak in the east and strong in the west, the northeastern part of East Asia is colder and the southwest part is warmer.

参考文献

[1]Chen W, Graf H F, Ronghui H, 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon[J]. Advances in Atmospheric Sciences, 17(1):48-60.
[2]Chen W, Yang S, Huang R H, 2005. Relationship between stationary planetary wave activity and the East Asian wintermonsoon[J]. Journal of Geophysical Research:Atmospheres, 110(D14):D14110. DOI:10.1029/2004JD005669.
[3]Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian high in Northern Hemisphere climate variability[J]. Geophysical Research Letters, 28(2):299-302.
[4]Hasanean H M, Almazroui M, Jones P D, et al, 2013. Siberian high variability and its teleconnections with tropical circulations and surface air temperature over Saudi Arabia[J]. Climate dynamics, 41(7/8):2003-2018.
[5]Wang L, Chen W, 2014. The East Asian winter monsoon:Re-amplification in the mid-2000s[J]. Chinese Science Bulletin, 59(4):430-436.
[6]Wang L, Huang R, Gu L, et al, 2009. Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity[J]. Journal of Climate, 22(18):4860-4872.
[7]Wang L, Lu M M, 2016. The East Asian winter monsoon[M] in: World Scientific Series on Asia-Pacific Weather and Climate: Volume 9. The global monsoon system: Research and forecast (3rd Edition). Edited by Chang C P, Kuo H C, Lau N C, et al, 51-61, DOI: <a href="http://dx.doi.org/10.1142/9789813200913_0005" target="_blank">10.1142/9789813200913_0005</a>.
[8]Wu B, Wang J, 2002. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent[J/OL]. Advances in Atmospheric Sciences, 19: 297.[2018-10-08]. https: //doi.org/10.1007/s00376-002-0024-x.
[9]陈文, 康丽华, 2006.北极涛动与东亚冬季气候在年际尺度上的联系:准定常行星波的作用[J].大气科学, 30(5):863-870.
[10]陈文, 兰晓青, 王林, 等, 2013. ENSO和北极涛动对东亚冬季气候异常的综合影响[J].科学通报, 58(8):634-641.
[11]丁一汇, 温市耕, 李运锦, 1991.冬季西伯利亚高压动力结构的研究[J].气象学报, 49(4):430-439.
[12]龚道溢, 王绍武, 1999.西伯利亚高压的长期变化及全球变暖可能影响的研究[J].地理学报, (2):125-133.
[13]龚道溢, 朱锦红, 王绍武, 2002.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象, 21(1):8-14.
[14]贺圣平, 王会军, 2012.东亚冬季风综合指数及其表达的东亚冬季风年际变化特征[J].大气科学36(3):523-538. DOI:10.3878/j.issn.1006-9895.2011.11083.
[15]侯亚红, 杨修群, 李刚, 2007.冬季西伯利亚高压变化特征及其与中国气温的关系[J].气象科技, 35(5):646-650.
[16]侯亚红, 杨修群, 李刚, 等, 2008.西伯利亚高压特征指数及其变率分析[J].大气科学学报, 31(3):326-330.
[17]贾丹, 简茂球, 2015.中国冬季月地面气温的年际变化[J].气候与环境研究, 20(4):454-464. DOI:10.3878/j.issn.1006-9585.2015.14240.
[18]康丽华, 陈文, 王林, 等, 2009.我国冬季气温的年际变化及其与大气环流和海温异常的关系[J].气候与环境研究, 14(1):45-53.
[19]蓝柳茹, 李栋梁, 2016.西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响[J].高原气象, 35(3):662-674. DOI:10.7522/j.issn.1000-0534.2016.00022.
[20]毛睿, 龚道溢, 房巧敏, 2007.冬季东亚中纬度西风急流对我国气候的影响[J].应用气象学报, 18(2):137-146.
[21]王绍武, 1962.东亚大气活动中心的多年变化与我国的气候振动[J].气象学报, 32(1):21-38.
[22]王遵娅, 丁一汇, 2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学, 30(6):1068-1076.
[23]武炳义, 苏京志, 张人禾, 2011.秋-冬季节北极海冰对冬季西伯利亚高压的影响[J].科学通报, 56(27):2335-2343.
[24]张耀存, 王东阡, 任雪娟, 2008.东亚高空温带急流区经向风的季节变化及其与亚洲季风的关系[J].气象学报, 66(5):707-715.
[25]武炳义, 黄荣辉, 1999.冬季北大西洋涛动极端异常变化与东亚冬季风[J].大气科学, 23(6):641-651. DOI:10.3878/j.issn.1006-9895.1999.06.01.
[26]李栋梁, 蓝柳茹, 2017.西伯利亚高压强度与北大西洋海温异常的关系[J].大气科学学报, 40(1):13-24.
文章导航

/