To analyze the response of NDVI to climate change and its time-lag effect in multi-time scales, synthetic data NDVI detected by NOAA-AVHRR, monthly observed data of precipitation and temperature from 1989 to 2008 were used in this paper. On this bases, we built NDVI prediction models to forecast trends of NDVI under different emission scenarios in the future. Results showed that:(1) NDVI high value areas existed in southeastern and eastern Three-Rivers-Source Region, and gradually become lower to West-north direction. Months from April to August were growing seasons for vegetation, when NDVI reached maximum in August. (2) Variations of NDVI in spring, summer, autumn displayed an obvious positive phase with temperature and precipitation excluding the summer precipitation; correlation features in spring and autumn were especially remarkable; the response of NDVI to temperature was higher than that to precipitation. Time-leg effect of NDVI in the current month showed most significant correlation feature with the last month's temperature and precipitation. (3) Under the background of Three-Rivers-Source Region's climate warming and slightly increasing precipitation from 2006 and 2050, average NDVI increased significantly, slower in the first decade, and faster in the next three decades with large growth rate. Distribution of NDVI was essentially constant in spatial, and increasing centers with high-intensity and large-range under RCP8.5 scenario were much prominent than that under RCP4.5 scenario. Years of 2016-2035 were rapid growth phase with increasing center of Lancangjiang source region under RCP4.5 scenario. Periods of 2016-2025 and 2036-2045 were rapid increasing time with high variability center of yangtze river source region under RCP8.5 scenario. Location of high variability center in coming multi-decades shifted from north to south in Three-Rivers-Source Region under both scenarios.
[1]Davenport M L, Nicholson S E, 1993. On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa[J]. International Journal of Remote Sensing, 14(12):2369-2389.
[2]IPCC, 2013. Climate change 2013:The physical science basis:Working Group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press.
[3]Piao S, Wang X, Ciais P, et al, 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 17(10):3228-3239.
[4]Zhang X, Ge Q, Zheng J, 2005. Impacts and lags of global warming on vegetation in Beijing for the last 50 years based on remotely sensed data and phonological information[J]. Chinese Journal of Ecology, 24(2):123-130.
[5]安如, 徐晓峰, 杨仁敏, 等, 2014.三江源区植被NDVI对区域气候的时滞效应分析[J].测绘与空间地理信息, 37(2):1-5.
[6]常国刚, 李凤霞, 李林, 2005.气候变化对青海生态与环境的影响及对策[J].气候变化研究进展, 1(4):172-175.
[7]陈琼, 周强, 张海峰, 等, 2010.三江源地区基于植被生长季的NDVI对气候因子响应的差异性研究[J].生态环境学报, 19(6):1284-1289.
[8]丛楠, 沈妙根, 2016. 1982-2009年基于卫星数据的北半球中高纬地区植被春季物候动态及其与气候的关系[J].应用生态学报, 27(9):2737-2746.
[9]邓振镛, 张强, 宁惠芳, 等, 2010.西北地区气候暖干化对作物气候生态适应性的影响[J].中国沙漠, 30(3):633-639.
[10]李林, 朱西德, 周陆生, 等, 2004.三江源地区气候变化及其对生态环境的影响[J].气象, 30(8):18-22.
[11]李娜, 谢虹, 2014.青藏高原NDVI对ENSO事件的响应[J].遥感技术与应用, 29(5):818-822.
[12]李霞, 李晓兵, 陈云浩, 等, 2007.中国北方草原植被对气象因子的时滞响应[J].植物生态学报, 31(6):1054-1062.
[13]李晓兵, 史培军, 2000.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J].植物生态学报, 24(3):379-382.
[14]刘晓婉, 彭定志, 徐宗学, 2018.雅鲁藏布江流域NDVI对高程与降水的相依性研究[J].高原气象, 37(2):349-357. DOI:10.7522/j.issn.1000-0534.2017.00048.
[15]廉丽姝, 2007.三江源地区土地覆被变化的区域气候响应[D].上海: 华东师范大学.
[16]林振耀, 赵昕奕, 1996.青藏高原气温降水变化的空间特征[J].中国科学, 26(4):354-358.
[17]刘敏超, 李迪强, 栾晓峰, 等, 2005.三江源地区生态系统服务功能与价值评估[J].植物资源与环境学报, 14(1):40-43.
[18]刘雅勤, 范广洲, 周定文, 等, 2007.青藏高原冬、春植被归一化指数变化特征及其与高原夏季降水的联系[J].气象学报, 65(6):959-967.
[19]刘正佳, 邵全琴, 2014.三江源地区植被覆盖度变化及其与气候因子的关系[J].水土保持研究, 21(6):334-339.
[20]柳媛普, 吕世华, 李锁锁, 等, 2007.近几十年黄河源区气候与植被变化及相关分析[J].高原气象, 26(5):1045-1051.
[21]钱拴, 伏洋, Pan F F, 2010.三江源地区生长季气候变化趋势及草地植被响应[J], 中国科学(地球科学), 40(10):1439-1445.
[22]宋冬梅, 张茜, 杨秀春, 等, 2011.三江源区MODIS植被指数时空分布特征[J].地理研究, 30(11):2067-2075.
[23]孙红雨, 1998.我国地表植被覆盖变化及其与环境因子关系——基于NOAA时间序列数据分析[J].遥感学报2(3):204-209.
[24]孙庆龄, 李宝林, 许丽丽, 等, 2016. 2000-2013年三江源植被NDVI变化趋势及影响因素分析[J].地球信息科学学报, 18(12):1707-1716.
[25]沈永平, 王国亚, 2013. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土, 35(5):1068-1076.
[26]唐红玉, 肖风劲, 张强, 等, 2006.三江源区植被变化及其对气候变化的响应[J].气候变化研究进展, 2(4):177-180.
[27]唐红玉, 杨小丹, 王希娟, 等, 2007.三江源地区近50年降水变化分析[J].高原气象, 26(1):47-54.
[28]王江山, 殷青军, 杨英连, 2005.利用NOAA/AVHRR监测青海省草地生产力变化的研究[J].高原气象, 24(1):117-122.
[29]魏凤英, 2007.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社.
[30]徐新良, 刘纪远, 邵全琴, 2008. 30年来青海三江源生态系统格局和空间结构动态变化[J].地理研究, 27(4):829-838.
[31]徐兴奎, 陈红, Levy J K, 2008.气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J].科学通报, 53(4):456-462.
[32]杨英莲, 2008.青海省天然草地NDVI的时空化与气温和降水的关系分析[D].南京: 南京信息工程大学.
[33]于伯华, 吕昌河, 吕婷婷, 等, 2009.青藏高原植被覆盖变化的地域分异特征[J].地理科学进展, 28(3):391-397.
[34]赵芳, 2009.三江源区草地MODIS植被指数时空变异及驱动因子分析[D].西宁: 青海大学.
[35]赵静, 姜琦刚, 李卫东, 等, 2008.基于NDVI变化的三江源生态环境演变分区研究[J].世界地质, 27(4):427-431.