论文

若尔盖湿地潜在蒸散量演变特征及影响因素分析

  • 穆文彬 ,
  • 孙素艳 ,
  • 马伟希 ,
  • 韩宇平
展开
  • 华北水利水电大学, 河南 郑州 450045;水利部水利水电规划设计总院, 北京 100120

收稿日期: 2018-09-11

  网络出版日期: 2019-08-28

基金资助

国家重点研发计划项目(2016YFC0401407);中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金项目(IWHR|SKL-201715);2019年度河南省重点研发与推广专项(192102310257)

Analysis on Evolution Characteristics and Influencing Factors on Evapotranspiration of Zoige Wetland

  • MU Wenbin ,
  • SUN Suyan ,
  • MA Weixi ,
  • HAN Yuping
Expand
  • North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China;China Renewable Energy Engineering Institute of the Ministry of Water Resources, Beijing 100120, China

Received date: 2018-09-11

  Online published: 2019-08-28

摘要

蒸散发是湿地水文过程重要组成部分,影响着湿地的水文生态系统。以若尔盖湿地为研究区,基于湿地及其周边6个气象站1963-2013年逐日气象观测资料,采用FAO推荐的Penman-Monteith公式估算了站点与湿地的潜在蒸散量(ET0),并分别从趋势性、突变性以及周期性角度分析了ET0的时空演变特征,进一步探讨了ET0与其主要影响因素的关系。结果表明,若尔盖湿地季节和年际ET0在时间尺度上均表现出增加的趋势,其中夏、秋季和年际尺度下,增加非常显著;在空间尺度上,表现出不同程度的增加趋势,其中增加非常显著的地区,在秋季表现为整个区域,年际尺度下则贯穿于整个东、西部;同时,若尔盖湿地呈现出较为明显的暖干化的趋势。春、冬季和年尺度ET0的突变年份均为2002年,而夏季和秋季则分别在1988年和1997年左右发生突变;春、夏、秋季以及年际尺度下,ET0变化的第一主周期可能为28年,冬季则为22年;此外,春、秋、冬季以及年尺度下,ET0的第一影响要素以温度为主,夏季则为日照时数。不同站点间,以冬季若尔盖和红原站最为突出,相对湿度为ET0的第一主要影响因素。研究以期为进一步探讨若尔盖湿地气候与生态环境的变化提供科学依据。

本文引用格式

穆文彬 , 孙素艳 , 马伟希 , 韩宇平 . 若尔盖湿地潜在蒸散量演变特征及影响因素分析[J]. 高原气象, 2019 , 38(4) : 716 -724 . DOI: 10.7522/j.issn.1000-0534.2018.00150

Abstract

Evapotranspiration is an important part of the hydrological process of wetland, which influences the hydrological ecosystem of wetland. Zoige Wetland is taken as the study area. Based on the daily meteorological observation data of 6 meteorological stations 1963-2013 which are within and outside the Zoige Wetland, the potential evapotranspiration (ET0) of each site and the wetland is estimated based on the Penman-Monteith formula recommended by FAO, respectively. The spatial and temporal evolution characteristics of ET0 are analyzed from the perspectives of tendency, mutation and periodicity, and the relationship between ET0 and its main influencing factors is discussed. The result shows that the tendency of seasonal and interannual ET0 in Zoige Wetland is presented as an increasing trend on the time scale, especially in summer, autumn and interannual scale; in terms of spatial scale, it exhibits an increasing trend to varying degrees, and this trend of ET0 is very significant among the whole region in autumn, and run through the east and west in the interannual scale; meanwhile, Zoige Wetland showed a more obvious trend of warming and drying. For the mutation of ET0, the mutation years of spring, winter and annual scale ET0 were all around 2002, while the mutation occurred in summer and autumn around 1988 and 1997, respectively. For the periodicity of ET0, the main period of ET0 in spring, summer, autumn and the interannual scales may be 28 years, and 22 years in winter. In addition, the first major influencing factor of ET0 is temperature in spring, autumn, winter and interannual scales, while the sunshine hours in summer; among different stations, the first one is relative humidity, which are the most obvious in Zoige and Hongyuan stations in winter. The study is expected to provide a scientific basis for further exploring the climate and ecological environment changes in the Zoige wetland.

参考文献

[1]Allen M R, Ingram W J, 2002. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 419(6903):224-232.
[2]Allen R G, Pereira L S, Raes D, et al, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements[M]. Fao, Rome: FAO Irrigation and drainage paper 56.
[3]Bai J, Lu Q, Zhao Q, et al, 2013. Effects ofalpine wetland landscapes on regional climate on the Zoige Plateau of China[J]. Advances in Meteorology (5):1-7.
[4]Dong Z, Hu G, Yan C, et al, 2009. Aeolian desertification and its causes in the Zoige Plateau of China's Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 59(8):1731-1740.
[5]Gu L L, Hu Z Y, Yao J M, et al, 2017. Actual and reference evapotranspiration in a cornfield in the Zhangye Oasis, Northwestern China[J]. Water, 9(7):499.
[6]Immerzeel W W, van Beek L P, Bierkens M F, 2010. Climate change will affect the Asian water towers[J]. Science, 328(5984):1382-1385.
[7]Jones P D, 1988. Hemispheric surface air temperature variations:Recent trends and an update to 1987[J]. Journal of Climate, 1(6):654-660.
[8]Krause P, Biskop S, Helmschrot J, et al, 2010. Hydrological system analysis and modelling of the Nam Co basin in Tibet[J]. Advances in Geosciences, 27:29-36.
[9]Li F, Zhang Y, Xu Z, et al, 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau[J]. Journal of Hydrology, 505:188-201.
[10]Li L, Hao Z C, Wang J H, et al, 2008. Impact of future climate change on runoff in the head region of the Yellow River[J]. Journal of Hydrologic Engineering, 13(5):347-354.
[11]Mu W B, Yu F L, Xie Y B, et al, 2014. The copula function-based probability characteristics analysis on seasonal drought & flood combination events on the North China Plain[J]. Atmosphere, 5(4):847-869.
[12]Oki T, Kanae S, 2006. Global hydrological cycles and world water resources[J]. Science, 313(5790):1068-1072.
[13]Wang B, Bao Q, Hoskins B, et al, 2008. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 35(14):63-72.
[14]Yang K, Ye B, Zhou D, et al, 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 109(3/4):517-534.
[15]Zhang Y, Liu C, Tang Y, et al, 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 112:D12110.
[16]白军红, 欧阳华, 崔保山, 等, 2008.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报, 28(5):2245-2252.
[17]白军红, 欧阳华, 徐惠风, 等, 2004.青藏高原湿地研究进展[J].地理科学进展, 23(4):1-9.
[18]丁一汇, 2008.人类活动与全球气候变化及其对水资源的影响[J].中国水利, 2(8):20-27.
[19]郭洁, 李国平, 2007.若尔盖气候变化及其对湿地退化的影响[J].高原气象, 26(2):422-428.
[20]李志威, 孙萌, 游宇驰, 等, 2017.若尔盖高原实际蒸散量变化规律研究[J].生态环境学报, 26(8):1317-1324.
[21]刘红玉, 白云芳, 2006.若尔盖高原湿地资源变化过程与机制分析[J].自然资源学报, 21(5):810-818.
[22]刘莉红, 郑祖光, 2003.近百余年我国气温变化的突变点分析[J].南京气象学院学报, 26(3):378-383.
[23]刘蓉, 文军, 王欣, 2016.黄河源区蒸散发量时空变化趋势及突变分析[J].气候与环境研究, 21(5):503-511.
[24]穆文彬, 李传哲, 刘佳, 等, 2017.大清河流域水循环影响因素演变特征分析[J].水利水电技术, 48(2):4-11.
[25]强皓凡, 靳晓言, 赵璐, 等, 2018.基于相对湿润度指数的近56年若尔盖湿地干湿变化[J].水土保持研究, 25(1):172-177.
[26]王富强, 王若雁, 孙美琪, 2018.基于涡度相关观测的寒区滨河湿地蒸散发特征分析[J].华北水利水电大学学报(自然科学版), 39(1):57-62.
[27]王建兵, 王素萍, 汪治桂, 2015. 1971~2010年若尔盖湿地潜在蒸散量及地表湿润度的变化趋势[J].地理科学, 35(2):245-250.
[28]魏凤英, 2007.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社.
[29]谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3):614-625. DOI:10.7522/j.issn.1000-0534.2017.00063.
[30]徐宗学, 和宛琳, 2006.近40年黄河源区气候要素分布特征及变化趋势分析[J].高原气象, 25(5):906-913.
文章导航

/