论文

中国污染物向北极地区传输的数值模拟研究

  • 邱继勇 ,
  • 黄倩 ,
  • 田文寿 ,
  • 谢飞 ,
  • 刘筱冉 ,
  • 王飞洋
展开
  • 兰州大学大气科学学院/半干旱气候变化教育部重点实验室, 甘肃 兰州 730000;中国人民解放军95871部队, 湖南 衡阳 421000;北京师范大学全球变化与地球系统科学研究院, 北京 100875

收稿日期: 2018-03-30

  网络出版日期: 2019-08-28

基金资助

国家自然科学基金项目(41775013,41575038)

Numerical Simulation Study on the Transport of Pollution from China to the Arctic Region

  • QIU Jiyong ,
  • HUANG Qian ,
  • TIAN Wenshou ,
  • XIE Fei ,
  • LIU Xiaoran ,
  • WANG Feiyang
Expand
  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;95871 Troops of People's Liberation Army of China, Hengyang 421000, Hunan, China;College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

Received date: 2018-03-30

  Online published: 2019-08-28

摘要

利用NECP/NCAR FNL客观分析资料驱动中尺度模式WRF,通过4个数值试验模拟分析了2010年不同气象条件下(3月、6月、9月和12月),中国华南地区排放的示踪物向北极地区传输的总量、传输特征及传输机制。模拟结果表明,12月传输到北极地区的示踪物最多,约达到排放总量的44‱;9月和6月的次之,约分别为7.5‱和7‱;3月的最少,只有0.105‱。12月,示踪物传输到北极地区所需的时间最短,约为3天;9月和6月分别需要5天和6天;而3月,则需要9天时间。另外,不同月份示踪物传输到北极地区的主要通道所在高度也不同。3月主要集中在850~700 hPa之间,9月在400~200 hPa之间,而6月和12月在850 hPa和200 hPa的高度上都有浓度较高的传输通道出现。进一步分析发现,示踪物的传输路径主要受环流场控制。较强的经向南风和气旋系统有利于示踪物向北极地区传输;东亚大槽是导致12月排放的示踪物在较短时间内向北极地区传输较多的重要原因。

本文引用格式

邱继勇 , 黄倩 , 田文寿 , 谢飞 , 刘筱冉 , 王飞洋 . 中国污染物向北极地区传输的数值模拟研究[J]. 高原气象, 2019 , 38(4) : 887 -900 . DOI: 10.7522/j.issn.1000-0534.2018.00088

Abstract

Using NECP/NCAR FNL objective analysis data driven mesoscale model WRF, four numerical experiments were conducted to simulate the total amount of traced emissions from South China to the Arctic region, investigating the transmission characteristics and related mechanisms under different weather conditions in March, June, September and December of 2010. The simulation results show that the peak concentration of emissions transported to the Arctic region was the highest in December, reaching 44‱ of the total emissions, followed by September and June, about 7.5‱ and 7‱ respectively, and the lowest in March, which was only 0.105‱. The emissions from South China to Arctic need 3 days in December, need respectively 5 and 6 days in September and June, and takes 9 days in March. In addition, the peak levels of absolute concentrations of emissions emitted to the Arctic under different weather conditions are also different, the emissions were mainly from 850 to 700 hPa in March and from 400 to 200 hPa in September, and in June and December appear at 850~200 hPa. Further analysis found that the path of emission transport is mainly controlled by the circulation field, and the strong radial south wind and cyclone systems facilitate the transmission of emissions to the Arctic. The East Asian trough is an important reason for the transport of traced emissions to the Arctic in a short period of time.

参考文献

[1]Arnold S R, Law K S, Brock C A, et al, 2016. Arctic air pollution:Challenges and opportunities for the next decade[J]. Science of the Anthropocene, 4:000104. DOI:10.12952/journal. elementa. 000104.
[2]Blaylock B K, Horel J D, Crosman E T, 2017. Impact of lake breezes on summer ozone concentrations in the salt lake valley[J]. Journal of Applied Meteorology Climatology, 56(2):353-369.
[3]Chen F, Dudhia J, 2001. Coupling an advanced land surface hydrology model with the penn state ncar mm5 modeling system. part Ⅱ:Preliminary model validation[J]. Monthly Weather Review, 129(4):569-585.
[4]Chen H, Wang H, 2015. Haze days in north china and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. Journal of Geophysical Research, 120(12):5895-5909.
[5]Eckhardt S, Stohl A, Beirle S, et al, 2003. The North Atlantic Oscillation controls air pollution transport to the Arctic[J]. Atmospheric Chemistry & Physics, 3(5):3223-3240.
[6]Fan T, Liu X, Ma P L, et al, 2018. Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models[J]. Atmospheric Chemistry & Physics, 18(2):1395-1417.
[7]Fisher J A, Jacob D J, Wang Q, et al, 2011a. Sources, distribution, and acidity of sulfate-ammonium aerosol in the Arctic in December-March[J]. Atmospheric Environment, 45(39):7301-7318.
[8]Fisher J A, 2011b. Atmospheric pollution in the Arctic:Sources, transport, and chemical processing[J]. Dissertations & Theses, 73(4):1-148.
[9]Hong S Y, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 132(1):103-120.
[10]Ikeda K, Tanimoto H, Sugita T, et al, 2017. Tagged tracer simulations of black carbon in the Arctic:Transport, source contributions, and budget[J]. Atmospheric Chemistry & Physics, 17(17):1-31.
[11]Janjic Z I, 1996. The surface layer in the NCEP eta model, Preprints, eleventh conference on numerical weather prediction[J]. American Meteorological Society, 8(1):354-355.
[12]Kain J S, 2004. The kain fritsch convective parameterization:An update[J]. Journal of Applied Meteorology, 43(1):170-181.
[13]Klonecki A, Hess P, Emmons L, et al, 2003. Seasonal changes in the transport of pollutants into the Arctic troposphere-model study[J]. Journal of Geophysical Research Atmospheres, 108(D4):109-125.
[14]Law K S, Stohl A, Quinn P K, et al, 2014. Arctic air pollution:New insights from polarcat-ipy[J]. Bulletin of the American Meteorological Society, 95(12):1873-1895.
[15]Liang Q, Jaeglé L, Hudman R C, et al, 2007. Summertime influence of asian pollution in the free troposphere over north America[J]. Journal of Geophysical Research Atmospheres, 112(D12):D12S11, DOI:10.1029/2006JD007919, 2007.
[16]Liu D, Quennehen B, Darbyshire E, et al, 2015. The importance of Asia as a source of black carbon to the European Arctic during Marchtime 2013[J]. Atmospheric Chemistry & Physics, 15(10):14843-14887.
[17]Pierro M D, Jaeglé L, Anderson T L, 2011. Satellite observations of aerosol transport from East Asia to the Arctic:Three case studies[J]. Atmospheric Chemistry & Physics, 11(5):2225-2243.
[18]Qi L, Li Q, Henze D K, et al, 2017. Sources of springtime surface black carbon in the arctic:an adjoint analysis[J]. Atmospheric Chemistry & Physics. DOI:10.5194/acp-2016-1112, 2017.
[19]Raut J C, Marelle L, Fast J D, et al, 2017. Cross-polar transport and scavenging of siberian aerosols containing black carbon during the 2012 access summer campaign[J]. Atmospheric Chemistry & Physics, 17(18):1-41.
[20]Shindell D T, Chin M, Dentener F, et al, 2008. A multi-model assessment of pollution transport to the arctic[J]. Atmospheric Chemistry & Physics Discussions, 8(3):5353-5372.
[21]Stohl A, Eckhardt S, Forster C, et al, 2002. On the pathways and timescales of intercontinental air pollution transport[J]. Journal of Geophysical Research Atmospheres, 107(D23):ACH 6-1-ACH 6-17.
[22]Wang H, Rasch P J, Easter R C, et al, 2015. Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic:Variations, sources, and transport pathways[J]. Journal of Geophysical Research Atmospheres, 119(22):12888-12909.
[23]Xie F, Li J, Tian W, et al, 2016. A quantitative estimation of the transport of surface emissions from different regions into the stratosphere[J]. Sola, 12(1):65-69.
[24]董俊玲, 韩志伟, 张仁健, 等, 2011. WRF模式对中国城市和半干旱地区气象要素的模拟检验和对比分析[J].气象科学, 31(4):484-492.
[25]付培健, 1998.一个可能的北极地区气溶胶源-中国戈壁沙漠与黄土高原[J].兰州大学学报(自科版), (1):128-134.
[26]郝巨飞, 张功文, 王晓娟, 等, 2017.一次环境大气重污染过程的监测分析[J].高原气象, 36(5):1404-1411. DOI:10.7522/j.issn.1000-0534.2016.00118.
[27]胡向军, 陶健红, 郑飞, 等, 2008. WRF模式物理过程参数化方案简介[J].甘肃科技, 24(20):73-75.
[28]黄忠伟, 2012.气溶胶物理光学特性的激光雷达遥感研究[D].兰州: 兰州大学.
[29]康丽泰, 陈思宇, 2017.中国北方一次沙尘天气过程的数值模拟[J].中国沙漠, 37(2):321-331.
[30]李斐, 邹捍, 周立波, 等, 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象, 36(2):340-357. DOI:10.7522/j.issn.1000-0534.2016.00041.
[31]秦世广, 丁爱军, 王韬, 2006.欧亚大陆生物质燃烧气团的输送特征及对中国的影响[J].中国环境科学, 26(6):641-645.
[32]吴兑, 毕雪岩, 邓雪娇, 等, 2006.珠江三角洲气溶胶云造成的严重灰霾天气[J].自然灾害学报, 15(6):77-83.
[33]吴遥, 李跃清, 蒋兴文, 等, 2017. WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象, 36(3):619-631. DOI:10.7522/j.issn.1000-0534.2016.00057.
[34]许平平, 田文寿, 张健恺, 等, 2015.春季青藏高原西北侧一次平流层臭氧向对流层传输的模拟研究[J].气象学报, 73(3):529-545.
[35]姚俊强, 杨青, 毛炜峄, 等, 2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象, 37(1):68-77. DOI:10.7522/j.issn.1000-0534.2017.00031.
[36]詹建琼, 陈立奇, 李伟, 等, 2011.北极新奥尔松黑碳气溶胶特征及其来源解析[C]//青年海洋科学研讨会.
[37]张雪莹, 王鑫, 周越, 等, 2017.兰州市夏季大气中碳类气溶胶含量变化特征及其来源分析[J].高原气象, 36(2):528-537. DOI:10.7522/j.issn.1000-0534.2016.00103.
文章导航

/