[1]Arnold S R, Law K S, Brock C A, et al, 2016. Arctic air pollution:Challenges and opportunities for the next decade[J]. Science of the Anthropocene, 4:000104. DOI:10.12952/journal. elementa. 000104.
[2]Blaylock B K, Horel J D, Crosman E T, 2017. Impact of lake breezes on summer ozone concentrations in the salt lake valley[J]. Journal of Applied Meteorology Climatology, 56(2):353-369.
[3]Chen F, Dudhia J, 2001. Coupling an advanced land surface hydrology model with the penn state ncar mm5 modeling system. part Ⅱ:Preliminary model validation[J]. Monthly Weather Review, 129(4):569-585.
[4]Chen H, Wang H, 2015. Haze days in north china and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. Journal of Geophysical Research, 120(12):5895-5909.
[5]Eckhardt S, Stohl A, Beirle S, et al, 2003. The North Atlantic Oscillation controls air pollution transport to the Arctic[J]. Atmospheric Chemistry & Physics, 3(5):3223-3240.
[6]Fan T, Liu X, Ma P L, et al, 2018. Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models[J]. Atmospheric Chemistry & Physics, 18(2):1395-1417.
[7]Fisher J A, Jacob D J, Wang Q, et al, 2011a. Sources, distribution, and acidity of sulfate-ammonium aerosol in the Arctic in December-March[J]. Atmospheric Environment, 45(39):7301-7318.
[8]Fisher J A, 2011b. Atmospheric pollution in the Arctic:Sources, transport, and chemical processing[J]. Dissertations & Theses, 73(4):1-148.
[9]Hong S Y, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 132(1):103-120.
[10]Ikeda K, Tanimoto H, Sugita T, et al, 2017. Tagged tracer simulations of black carbon in the Arctic:Transport, source contributions, and budget[J]. Atmospheric Chemistry & Physics, 17(17):1-31.
[11]Janjic Z I, 1996. The surface layer in the NCEP eta model, Preprints, eleventh conference on numerical weather prediction[J]. American Meteorological Society, 8(1):354-355.
[12]Kain J S, 2004. The kain fritsch convective parameterization:An update[J]. Journal of Applied Meteorology, 43(1):170-181.
[13]Klonecki A, Hess P, Emmons L, et al, 2003. Seasonal changes in the transport of pollutants into the Arctic troposphere-model study[J]. Journal of Geophysical Research Atmospheres, 108(D4):109-125.
[14]Law K S, Stohl A, Quinn P K, et al, 2014. Arctic air pollution:New insights from polarcat-ipy[J]. Bulletin of the American Meteorological Society, 95(12):1873-1895.
[15]Liang Q, Jaeglé L, Hudman R C, et al, 2007. Summertime influence of asian pollution in the free troposphere over north America[J]. Journal of Geophysical Research Atmospheres, 112(D12):D12S11, DOI:10.1029/2006JD007919, 2007.
[16]Liu D, Quennehen B, Darbyshire E, et al, 2015. The importance of Asia as a source of black carbon to the European Arctic during Marchtime 2013[J]. Atmospheric Chemistry & Physics, 15(10):14843-14887.
[17]Pierro M D, Jaeglé L, Anderson T L, 2011. Satellite observations of aerosol transport from East Asia to the Arctic:Three case studies[J]. Atmospheric Chemistry & Physics, 11(5):2225-2243.
[18]Qi L, Li Q, Henze D K, et al, 2017. Sources of springtime surface black carbon in the arctic:an adjoint analysis[J]. Atmospheric Chemistry & Physics. DOI:10.5194/acp-2016-1112, 2017.
[19]Raut J C, Marelle L, Fast J D, et al, 2017. Cross-polar transport and scavenging of siberian aerosols containing black carbon during the 2012 access summer campaign[J]. Atmospheric Chemistry & Physics, 17(18):1-41.
[20]Shindell D T, Chin M, Dentener F, et al, 2008. A multi-model assessment of pollution transport to the arctic[J]. Atmospheric Chemistry & Physics Discussions, 8(3):5353-5372.
[21]Stohl A, Eckhardt S, Forster C, et al, 2002. On the pathways and timescales of intercontinental air pollution transport[J]. Journal of Geophysical Research Atmospheres, 107(D23):ACH 6-1-ACH 6-17.
[22]Wang H, Rasch P J, Easter R C, et al, 2015. Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic:Variations, sources, and transport pathways[J]. Journal of Geophysical Research Atmospheres, 119(22):12888-12909.
[23]Xie F, Li J, Tian W, et al, 2016. A quantitative estimation of the transport of surface emissions from different regions into the stratosphere[J]. Sola, 12(1):65-69.
[24]董俊玲, 韩志伟, 张仁健, 等, 2011. WRF模式对中国城市和半干旱地区气象要素的模拟检验和对比分析[J].气象科学, 31(4):484-492.
[25]付培健, 1998.一个可能的北极地区气溶胶源-中国戈壁沙漠与黄土高原[J].兰州大学学报(自科版), (1):128-134.
[26]郝巨飞, 张功文, 王晓娟, 等, 2017.一次环境大气重污染过程的监测分析[J].高原气象, 36(5):1404-1411. DOI:10.7522/j.issn.1000-0534.2016.00118.
[27]胡向军, 陶健红, 郑飞, 等, 2008. WRF模式物理过程参数化方案简介[J].甘肃科技, 24(20):73-75.
[28]黄忠伟, 2012.气溶胶物理光学特性的激光雷达遥感研究[D].兰州: 兰州大学.
[29]康丽泰, 陈思宇, 2017.中国北方一次沙尘天气过程的数值模拟[J].中国沙漠, 37(2):321-331.
[30]李斐, 邹捍, 周立波, 等, 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象, 36(2):340-357. DOI:10.7522/j.issn.1000-0534.2016.00041.
[31]秦世广, 丁爱军, 王韬, 2006.欧亚大陆生物质燃烧气团的输送特征及对中国的影响[J].中国环境科学, 26(6):641-645.
[32]吴兑, 毕雪岩, 邓雪娇, 等, 2006.珠江三角洲气溶胶云造成的严重灰霾天气[J].自然灾害学报, 15(6):77-83.
[33]吴遥, 李跃清, 蒋兴文, 等, 2017. WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象, 36(3):619-631. DOI:10.7522/j.issn.1000-0534.2016.00057.
[34]许平平, 田文寿, 张健恺, 等, 2015.春季青藏高原西北侧一次平流层臭氧向对流层传输的模拟研究[J].气象学报, 73(3):529-545.
[35]姚俊强, 杨青, 毛炜峄, 等, 2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象, 37(1):68-77. DOI:10.7522/j.issn.1000-0534.2017.00031.
[36]詹建琼, 陈立奇, 李伟, 等, 2011.北极新奥尔松黑碳气溶胶特征及其来源解析[C]//青年海洋科学研讨会.
[37]张雪莹, 王鑫, 周越, 等, 2017.兰州市夏季大气中碳类气溶胶含量变化特征及其来源分析[J].高原气象, 36(2):528-537. DOI:10.7522/j.issn.1000-0534.2016.00103.