论文

青藏高原积雪对陆面过程热量输送的影响研究

  • 王婷 ,
  • 李照国 ,
  • 吕世华 ,
  • 姚闯 ,
  • 马翠丽
展开
  • 成都信息工程大学大气科学学院, 四川 成都 610225;中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044

收稿日期: 2018-10-08

  网络出版日期: 2019-10-28

基金资助

国家自然科学基金项目(41775016,91537214,41975007)

Study on the Effects of Snow Cover on Heat Transport in Land Surface Processes over Qinghai-Tibetan Plateau

  • WANG Ting ,
  • LI Zhaoguo ,
  • Lü Shihua ,
  • YAO Chuang ,
  • MA Cuili
Expand
  • Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-10-08

  Online published: 2019-10-28

摘要

利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(12月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。

本文引用格式

王婷 , 李照国 , 吕世华 , 姚闯 , 马翠丽 . 青藏高原积雪对陆面过程热量输送的影响研究[J]. 高原气象, 2019 , 38(5) : 920 -934 . DOI: 10.7522/j.issn.1000-0534.2019.00026

Abstract

Based on the long-term snow depth dataset of China (from 1979 to 2016), the distribution and variation characteristics of snow depth and snow days on the Qinghai-Tibetan Plateau (QTP) are analyzed. This study divides the snow cover period into three stages (accumulation, peak and melt). Combined with ERA-Interim monthly average reanalysis data, the relationships between snow cover and surface heat conditions (air, surface and soil temperature) and energy transport (surface net short-wave and net long-wave radiation, sensible and latent heat flux) in the TP are analyzed. The study preliminary discusses the role of snow in the QTP land surface process. The results show that:the snow (depth and days) on the QTP shows a decreasing trend during 1979-2016, but the trend in the Source Region of the Yellow River increases. The most significant decreasing trend appears in the peak snow stage (from January to February). The snow cover on the QTP plays a most important role on surface cooling, the response of deep soil temperature to the snow is hysteretic. The reduction of snow cover inhibits the upward heat transfer of soil, which is not conducive to the formation of frozen soil. The QTP snow cover shows a negative correlation with the sensible heat flux and also the surface heat flux. The negative correlation between snow cover and latent heat flux is weaker than that between snow cover and sensible heat flux. Due to the relatively large bias between QTP snows depth from ERA-Interim and the remote sensing data used in this study (including spatial distribution, climate tendency rate, inter-annual variability and absolute size, etc.), the snow cover shows a low relevant to the surface thermal condition and the surface heat flux. It is necessary to make a further discussion by the land surface model simulation.

参考文献

[1]Che T, Li X, Jin R, et al, 2008. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 49:145-154.
[2]Flanner M G, Shell K M, Barlage M, et al, 2013. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 4(3):151-155.
[3]Groisman P Y, Karl T R, Knight R W, 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures[J]. Science, 263(5144):198-200.
[4]Grundstein A, Todhunter P, Mote T, 2005. Snowpack control over the thermal offset of air and soil temperatures in eastern North Dakota[J]. Geophysical Research Letters, 32(8):L08503.
[5]Lawrence D M, Slater A G, 2009. The contribution of snow condition trends to future ground climate[J]. Climate Dynamics, 34(7):969-981.
[6]Lu G, Lu H, Chen X W, 2014. Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau[J]. Journal of Mountain Science, 11(5):1154-1168.
[7]North G R, Bell T L, Cahalan R F, et al, 1982. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 110(7):699-706.
[8]Perket J, Flanner M G, Kay J E, 2014. Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM[J]. Journal of Geophysical Research Atmospheres, 119(3):1356-1362.
[9]Ran Y, Li X, Cheng G, et al, 2012. Distribution of permafrost in China:An overview of existing permafrost maps[J]. Permafrost & Periglacial Processes, 23(4):322-333.
[10]安迪, 李栋梁, 袁云, 等, 2009.基于不同积雪日定义的积雪资料比较分析[J].冰川冻土, 31(6):1019-1027.
[11]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及异常成因[J].高原气象, 37(4):899-910. DOI:10.7522/j.issn.1000-0534.2017.00099.
[12]边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象, 35(3):621-632. DOI:10.7522/j.issn.1000-0534.2016.00029.
[13]车涛, 李新, 2005.1993-2002年中国积雪水资源时空分布与变化特征[J].冰川冻土, 27(1):64-67.
[14]陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土, 39(4):760-770.
[15]陈月亮, 黄菲, 王宏, 等, 2015.北半球雪水当量季节和年际尺度时空主模态变化特征[J].中国海洋大学学报(自然科学版), 45(7):11-17.
[16]段安民, 肖志祥, 吴国雄, 等, 2014.青藏高原冬春积雪影响亚洲夏季风的研究进展[J].气象与环境科学, 37(3):94-101.
[17]付强, 侯仁杰, 王子龙, 等, 2015.冻融期积雪覆盖下土壤水热交互效应[J].农业工程学报, 31(15):101-107.
[18]高荣, 韦志刚, 董文杰, 2004.青藏高原冬春积雪和季节冻土年际变化差异的成因分析[J].冰川冻土, 26(2):153-159.
[19]何冬燕, 田红, 邓伟涛, 2013.三种再分析地表温度资料在青藏高原区域的适用性分析[J].大气科学学报, 36(4):458-465.
[20]何丽烨, 李栋梁, 2012.中国西部积雪类型划分[J].气象学报, 70(6):1292-1301.
[21]李小兰, 张飞民, 王澄海, 2012.中国地区地面观测积雪深度和遥感雪深资料的对比分析[J].冰川冻土, 34(4):755-764.
[22]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2):317-324. DOI:10.7522/j.issn.1000-0534.2017.00040.
[23]刘晓冉, 李国平, 程炳岩, 2008.青藏高原前期冬春季地面热源与我国夏季降水关系的初步分析[J].大气科学, 32(3):561-571.
[24]柳媛普, 李锁锁, 吕世华, 等, 2014.基于CMIP5的东亚地区降雪量变化特征分析[J].冰川冻土, 36(6):1345-1352.
[25]卢咸池, 罗勇, 1994.青藏高原冬青季雪盖对东亚夏季大气环流影响的数值试验[J].应用气象学报, 5(4):385-393.
[26]马虹, 胡汝骥, 1995.积雪对冻土热状况的影响[J].干旱区地理, 18(4):23-27.
[27]马丽娟, 秦大河, 2012.1957-2009年中国台站观测的关键积雪参数时空变化特征[J].冰川冻土, 34(1):1-11.
[28]马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2):207-215.
[29]秦大河, 效存德, 丁永建, 等, 2006.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望[J].应用气象学报, 17(6):649-656.
[30]覃郑婕, 侯书贵, 王叶堂, 等, 2017.青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J].地理研究, 36(4):743-754.
[31]王澄海, 王芝兰, 崔洋, 2009.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土, 31(2):301-310.
[32]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164. DOI:10.7522/j.issn.1000-0534.2016.00117.
[33]王芝兰, 李耀辉, 王劲松, 等, 2015. SVD分析青藏高原冬春积雪异常与西北地区春、夏季降水的相关关系[J].干旱气象, 33(3):363-370.
[34]肖林, 车涛, 2015.青藏高原积雪对气候反馈的初步研究[J].遥感技术与应用, 30(6):1066-1075.
[35]肖雄新, 2018.北半球积雪深度反演算法及其时空变化特征研究[D].兰州: 兰州大学.
[36]谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12. DOI:10.7522/j.issn.1000-0534.2016.00012.
[37]杨建平, 杨岁桥, 李曼, 等, 2013.中国冻土对气候变化的脆弱性[J].冰川冻土, 35(6):1436-1445.
[38]张伟, 周剑, 王根绪, 2013.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 35(3):528-540.
[39]周幼吾, 2000.中国冻土[M].北京:科学出版社.
[40]朱玉祥, 丁一汇, 刘海文, 2009.青藏高原冬季积雪影响我国夏季降水的模拟研究[J].大气科学, 33(5):903-915.
[41]朱玉祥, 丁一汇, 徐怀刚, 2007.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J].气象学报, 65(6):946-958.
文章导航

/