论文

青海湖夏秋季局地气候效应数值模拟研究

  • 苏东生 ,
  • 文莉娟 ,
  • 赵林 ,
  • 李照国 ,
  • 杜娟
展开
  • 中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;中国科学院大学, 北京 100049

收稿日期: 2018-08-29

  网络出版日期: 2019-10-28

基金资助

国家自然科学基金项目(91637107);中德科学中心中德合作项目(GZ1259);中科院"西部之光"计划"西部青年学者"A类项目(Y929641001);国家自然科学基金项目(41981220292)

Numerical Simulation of Seasonal Local Climate Effect in Qinghai Lake

  • SU Dongsheng ,
  • WEN Lijuan ,
  • ZHAO Lin ,
  • LI Zhaoguo ,
  • DU Juan
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-08-29

  Online published: 2019-10-28

摘要

由于水陆热力性质差异,湖泊对局地天气气候具有显著影响,占中国湖泊总面积一半以上的高原湖泊对区域天气气候的影响不可忽视,但目前对高原湖泊局地气候效应的研究依然存在不足。本研究利用WRF-FLake动态耦合模式,设计了有湖与无湖两组实验,对高原最大湖泊青海湖的局地气候效应进行了整年的模拟研究。结果表明,耦合模式的模拟性能良好,青海湖在16月使得区域气温降低,而712月使得区域气温升高,且青海湖的存在降低了19月的日最高气温,增加了612月的日最低气温,使得气温日变化减小,白天青海湖为冷湖效应,而夜间青海湖为暖湖效应。26月青海湖轻微减少区域降水量,712月明显增加了区域降水量,且8月增加量最显著。青海湖对局地年降水量的贡献率在湖面上最大可达50%~60%,而在周边陆地为10%~30%,夏季青海湖增加的降水量最多,而秋季青海湖对总降水的贡献率最大,青海湖增加的降水在20:00(北京时,下同)至次日02:00最多,而14:0020:00最少,夏季增加的对流性降水较多,秋季增加的对流性降水较少。白天青海湖的冷湖效应使湖面产生下沉辐散气流,抑制对流的发展和水汽的扩散,导致湖泊降水效应减弱,而夜间青海湖的暖湖效应使湖面产生辐合上升气流,促进对流的发展和水汽的扩散,导致湖泊降水效应增强。

本文引用格式

苏东生 , 文莉娟 , 赵林 , 李照国 , 杜娟 . 青海湖夏秋季局地气候效应数值模拟研究[J]. 高原气象, 2019 , 38(5) : 944 -958 . DOI: 10.7522/j.issn.1000-0534.2018.00125

Abstract

Due to the difference of the thermal properties between water and land, the lake has a significant impact on the local weather and climate, lakes on Qinghai-Tibetan Plateau account for more than half of China's total lake area, the effects of plateau lakes on regional weather and climate cannot be neglected, but studies on the local climate effect of the plateau lake are still insufficient. In this study, two simulation experiments that with and without lake were conducted by using the WRF-FLake dynamic coupling model to study the local climate effect of Qinghai Lake, the largest lake on TP, in a whole year. The results show that coupled model have a good performance on TP lake, Qinghai Lake reduce regional mean air temperature from January to June, while increase it from July to December. Moreover, daily maximum air temperature was decreased from January to September and daily minimum air temperature was increased from June to December, which also reduced the daily variation of air temperature. Qinghai lake have a cold lake effect in the daytime and turns to a warm lake effect in the nighttime. Qinghai lake slightly reduced the amount of precipitation in the lake area from February to June and significantly increased the regional precipitation from July to December, especially in August. The contribution rate of Qinghai lake to local annual precipitation is up to 50%~60% on the lake surface, and 10%~30% on the surrounding land. Qinghai lake increased the maximum amount of precipitation in summer, while has the largest contribution to total precipitation in autumn. The increased precipitation caused by Qinghai lake distribute most from 20:00 (Beijing Time, same below) to 02:00 of nighttime, while least from 14:00 to 20:00 of daytime. Most of them is convective precipitation in summer but not in autumn. During the daytime, the cold lake effect of Qinghai lake produces a sinking and divergent flow on the surface of the lake that inhibit the development of convection and the diffusion of water vapor, leading to a weaken of the lake effect precipitation, while the warm lake effect of Qinghai Lake in the night generate convergence and upward airflow on the lake surface, promote the development of convection and the diffusion of water vapor, strengthen the lake precipitation effect.

参考文献

[1]Bates G T, Giorgi F, Hostetler S W, 1993. Toward the simulation of the effects of the Great Lakes on regional climate[J]. Monthly Weather Review, 121(5):1373-1387.
[2]Bonan G B, 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces[J]. Journal of Climate, 8(11):2691-2704.
[3]Changnon Jr S A, 1961. Precipitation contrasts between the Chicago urban area and an offshore station in southern Lake Michigan[J]. Bulletin of the American Meteorological Society, 42(1):1-10.
[4]Changnon S A, Jones D, 1972. Review of the influences of the Great Lakes on weather[J]. Water Resources Research, 8(2):360-371.
[5]Cox H J, 1917. Influence of the Great Lakes upon movement of high and low pressure areas[M]. US Government Printing Office.
[6]Crosman E T, Horel J D, 2009. MODIS-derived surface temperature of the Great Salt Lake[J]. Remote Sensing of Environment, 113(1):73-81.
[7]Chen F, Dudhia J, 2001. Coupling an advanced land-surface hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation[J], Monthly Weather Review, 129(4), 569-585.
[8]Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24(7/8):793-807.
[9]Dudhia J, 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 46(20), 3077-3107.
[10]Eerola K, Rontu L, Kourzeneva E, et al, 2010. A study on lake temperature and ice cover in HIRLAM[J]. Boreal Environment Research, 15:130-142.
[11]Friedl M A, Sulla-Menashe D, Tan B, et al, 2010. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 114:168-182. DOI:10.1016/j.rse. 2009.08.016.
[12]Gao Y, Tang M, Luo S, et al, 1981. Some aspects of recent research on the Qinghai-Xizang Plateau meteorology[J]. Bulletin of the American Meteorological Society, 62(1):31-35.
[13]Gao Y, Xu J, Chen D, 2015. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 28(7):2823-2841.
[14]Gula J, Peltier W R, 2012. Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model:The impact of the Great Lakes system on regional greenhouse warming[J]. Journal of Climate, 25(21):7723-7742.
[15]Gerken T, Biermann T, Babel W, et al, 2014. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 117(1/2):149-167.
[16]Hostetler S W, Bates G T, Giorgi F, 1993. Interactive coupling of a lake thermal model with a regional climate model[J]. Journal of Geophysical Research:Atmospheres, 98:5045-5057. DOI:10.1029/92JD02843.
[17]Hong S Y, Pan H L, 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 124, 2322-2339.
[18]Jiusto J E, Kaplan M L, 1972. Snowfall from Lake-Effect Storms[J]. Monthly Weather Review, 100(1):62.
[19]Keen C S, Lyons W A, 1978. Lake/land breeze circulations on the western shore of Lake Michigan[J]. Journal of Applied Meteorology, 17(12):1843-1855.
[20]Kirillin G, Wen L, Shatwell T, 2017. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands[J]. Hydrology and Earth System Sciences, 21(4):1895.
[21]Kain J S, 2004. The Kain-Fritsch convective parameterization:An update[J]. Journal of Applied Meteorology, 43(1), 170-181.
[22]Lyons W A, 1966. Some effects of Lake Michigan upon squall lines and summertime convection[M]. Satellite and Mesometeorology Research Project, University of Chicago.
[23]Lofgren B M, 1997. Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate[J]. Journal of Climate, 10(11):2847-2858.
[24]Lang J, Lyu S, Li Z, et al, 2018. An Investigation of Ice Surface Albedo and Its Influence on the High-Altitude Lakes of the Tibetan Plateau[J]. Remote Sensing, 10(2):218.
[25]Lin Y L, Farley R D, Orville H D, 1983. Bulk Parameterization of the Snow Field in a Cloud Model[J]. Journal of Climate and Applied Meteorology, 22, 1065-1092. DOI:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0. CO; 2.
[26]Miner T J, Fritsch J M, 1997. Lake-effect rain events[J]. Monthly Weather Review, 125(12):3231-3248.
[27]Ma R H, Yang G S, Duan H T, et al, 2011. China's lakes at present:number, area and spatial distribution[J]. Science China (Earth Sciences), 54(2):283-289.
[28]Ma Y, Wang Y, Wu R, et al, 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 13(7):1103.
[29]Mironov D, 2008. Parameterization of lakes in numerical weather prediction: Description of a lake model COSMO[M]. Deutscher Wetterdienst: Tech Rep No. 11. Deutscher Wetterdienst Offenbach am Main, Germany.
[30]Maddukuri C S, 1982. A numerical simulation of an observed lake breeze over Southern Lake Ontario[J]. Boundary-Layer Meteorology, 23(3):369-387.
[31]Mlawer E J, Taubman S J, Brown P D, et al, 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682. DOI:10.1029/97JD00237.
[32]Morrison H, Curry J A, Khvorostyanov V I, 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ:Description[J]. Journal of the Atmospheric Sciences, 62(6):1665-1677.
[33]Notaro M, Holman K, Zarrin A, et al, 2013. Influence of the Laurentian Great Lakes on regional climate[J]. Journal of Climate, 26(3):789-804.
[34]Rouse W R, Oswald C M, Binyamin J, et al, 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake[J]. Journal of Hydrometeorology, 4(4):720-730.
[35]Scott R W, Huff F A, 1996. Impacts of the Great Lakes on Regional Climate Conditions[J]. Journal of Great Lakes Research, 22(4):845-863.
[36]Skamarock W C, 2008. A description of the advanced research WRF version 3[J]. NCAR Technical, 113:7-25.
[37]Wilson J W, 1977. Effect of Lake Ontario on Precipitation[J]. Monthly Weather Review, 105(2):207-214.
[38]Wen L J, Lü S H, Li Z G, et al, 2015. Impact of two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau[J]. Advances in Meteorology, 2015(D14):ACH 9-1-ACH 9-6.
[39]Xu X D, Lu C G, Shi X H, et al, 2008. World water tower:An atmospheric perspective[J]. Geophysical Research Letters, 35(20):L20815.
[40]Zhang G, Yao T, Xie H, et al, 2014. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research:Atmospheres, 119(14):8552-8567.
[41]陈万隆, 孙卫国, 周竞南, 等, 1995.青海湖湖陆风的数值研究[J].湖泊科学, 7(4):289-296.
[42]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5):1176-1187. DOI:10.7522/j.issn.1000-0534.2016.00131.
[43]曹渐华, 刘熙明, 李国平, 等, 2015.鄱阳湖地区湖陆风特征及成因分析[J].高原气象, 34(2):426-435. DOI:10.7522/j.issn.1000-0534.2013.00197.
[44]方楠, 阳坤, 拉珠, 等, 2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3):610-618. DOI:10.7522/j.issn.1000-0534.2016.0038.
[45]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j.issn.1000-0534.2016.00125.
[46]吕雅琼, 杨显玉, 马耀明, 2007.夏季青海湖局地环流及大气边界层特征的数值模拟[J].高原气象, 26(4):686-692.
[47]吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6):1205-1210.
[48]林必元, 李敏娴, 骆平, 1988.洞庭湖湖陆风特征与降水[J].南京气象学院学报, 11(1):78-88.
[49]苏东生, 胡秀清, 文莉娟, 等, 2018.青海湖热力状况对气候变化响应的数值研究[J].高原气象, 37(2):394-405. DOI:10.7522/j.issn.1000-0534.2017.00069.
[50]李强, 李永华, 周锁铨, 等, 2011.基于WRF模式的三峡地区局地下垫面效应的数值实验[J].高原气象, 30(1):83-93.
[51]唐滢, 黄安宁, 田栗嵘, 等, 2016.夏季太湖局地气候效应的数值模拟研究[J].气象科学, 36(5):647-654.
[52]万军山, 吕丹苗, 1994.夏季鄱阳湖水体温度场及其气温效应[J].应用气象学报, 5(3):374-379.
[53]许鲁君, 刘辉志, 曹杰, 2014.大理苍山-洱海局地环流的数值模拟[J].大气科学, 38(6):1198-1210.
[54]许鲁君, 刘辉志, 2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报, 73(4):789-802.
[55]闫立娟, 郑绵平, 魏乐军, 2016.近40年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘, 23(4):310-323.
[56]杨显玉, 文军, 2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 31(4):927-934.
文章导航

/