[1]Bates G T, Giorgi F, Hostetler S W, 1993. Toward the simulation of the effects of the Great Lakes on regional climate[J]. Monthly Weather Review, 121(5):1373-1387.
[2]Bonan G B, 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces[J]. Journal of Climate, 8(11):2691-2704.
[3]Changnon Jr S A, 1961. Precipitation contrasts between the Chicago urban area and an offshore station in southern Lake Michigan[J]. Bulletin of the American Meteorological Society, 42(1):1-10.
[4]Changnon S A, Jones D, 1972. Review of the influences of the Great Lakes on weather[J]. Water Resources Research, 8(2):360-371.
[5]Cox H J, 1917. Influence of the Great Lakes upon movement of high and low pressure areas[M]. US Government Printing Office.
[6]Crosman E T, Horel J D, 2009. MODIS-derived surface temperature of the Great Salt Lake[J]. Remote Sensing of Environment, 113(1):73-81.
[7]Chen F, Dudhia J, 2001. Coupling an advanced land-surface hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation[J], Monthly Weather Review, 129(4), 569-585.
[8]Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24(7/8):793-807.
[9]Dudhia J, 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 46(20), 3077-3107.
[10]Eerola K, Rontu L, Kourzeneva E, et al, 2010. A study on lake temperature and ice cover in HIRLAM[J]. Boreal Environment Research, 15:130-142.
[11]Friedl M A, Sulla-Menashe D, Tan B, et al, 2010. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 114:168-182. DOI:10.1016/j.rse. 2009.08.016.
[12]Gao Y, Tang M, Luo S, et al, 1981. Some aspects of recent research on the Qinghai-Xizang Plateau meteorology[J]. Bulletin of the American Meteorological Society, 62(1):31-35.
[13]Gao Y, Xu J, Chen D, 2015. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 28(7):2823-2841.
[14]Gula J, Peltier W R, 2012. Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model:The impact of the Great Lakes system on regional greenhouse warming[J]. Journal of Climate, 25(21):7723-7742.
[15]Gerken T, Biermann T, Babel W, et al, 2014. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 117(1/2):149-167.
[16]Hostetler S W, Bates G T, Giorgi F, 1993. Interactive coupling of a lake thermal model with a regional climate model[J]. Journal of Geophysical Research:Atmospheres, 98:5045-5057. DOI:10.1029/92JD02843.
[17]Hong S Y, Pan H L, 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 124, 2322-2339.
[18]Jiusto J E, Kaplan M L, 1972. Snowfall from Lake-Effect Storms[J]. Monthly Weather Review, 100(1):62.
[19]Keen C S, Lyons W A, 1978. Lake/land breeze circulations on the western shore of Lake Michigan[J]. Journal of Applied Meteorology, 17(12):1843-1855.
[20]Kirillin G, Wen L, Shatwell T, 2017. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands[J]. Hydrology and Earth System Sciences, 21(4):1895.
[21]Kain J S, 2004. The Kain-Fritsch convective parameterization:An update[J]. Journal of Applied Meteorology, 43(1), 170-181.
[22]Lyons W A, 1966. Some effects of Lake Michigan upon squall lines and summertime convection[M]. Satellite and Mesometeorology Research Project, University of Chicago.
[23]Lofgren B M, 1997. Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate[J]. Journal of Climate, 10(11):2847-2858.
[24]Lang J, Lyu S, Li Z, et al, 2018. An Investigation of Ice Surface Albedo and Its Influence on the High-Altitude Lakes of the Tibetan Plateau[J]. Remote Sensing, 10(2):218.
[25]Lin Y L, Farley R D, Orville H D, 1983. Bulk Parameterization of the Snow Field in a Cloud Model[J]. Journal of Climate and Applied Meteorology, 22, 1065-1092. DOI:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0. CO; 2.
[26]Miner T J, Fritsch J M, 1997. Lake-effect rain events[J]. Monthly Weather Review, 125(12):3231-3248.
[27]Ma R H, Yang G S, Duan H T, et al, 2011. China's lakes at present:number, area and spatial distribution[J]. Science China (Earth Sciences), 54(2):283-289.
[28]Ma Y, Wang Y, Wu R, et al, 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 13(7):1103.
[29]Mironov D, 2008. Parameterization of lakes in numerical weather prediction: Description of a lake model COSMO[M]. Deutscher Wetterdienst: Tech Rep No. 11. Deutscher Wetterdienst Offenbach am Main, Germany.
[30]Maddukuri C S, 1982. A numerical simulation of an observed lake breeze over Southern Lake Ontario[J]. Boundary-Layer Meteorology, 23(3):369-387.
[31]Mlawer E J, Taubman S J, Brown P D, et al, 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682. DOI:10.1029/97JD00237.
[32]Morrison H, Curry J A, Khvorostyanov V I, 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ:Description[J]. Journal of the Atmospheric Sciences, 62(6):1665-1677.
[33]Notaro M, Holman K, Zarrin A, et al, 2013. Influence of the Laurentian Great Lakes on regional climate[J]. Journal of Climate, 26(3):789-804.
[34]Rouse W R, Oswald C M, Binyamin J, et al, 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake[J]. Journal of Hydrometeorology, 4(4):720-730.
[35]Scott R W, Huff F A, 1996. Impacts of the Great Lakes on Regional Climate Conditions[J]. Journal of Great Lakes Research, 22(4):845-863.
[36]Skamarock W C, 2008. A description of the advanced research WRF version 3[J]. NCAR Technical, 113:7-25.
[37]Wilson J W, 1977. Effect of Lake Ontario on Precipitation[J]. Monthly Weather Review, 105(2):207-214.
[38]Wen L J, Lü S H, Li Z G, et al, 2015. Impact of two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau[J]. Advances in Meteorology, 2015(D14):ACH 9-1-ACH 9-6.
[39]Xu X D, Lu C G, Shi X H, et al, 2008. World water tower:An atmospheric perspective[J]. Geophysical Research Letters, 35(20):L20815.
[40]Zhang G, Yao T, Xie H, et al, 2014. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research:Atmospheres, 119(14):8552-8567.
[41]陈万隆, 孙卫国, 周竞南, 等, 1995.青海湖湖陆风的数值研究[J].湖泊科学, 7(4):289-296.
[42]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5):1176-1187. DOI:10.7522/j.issn.1000-0534.2016.00131.
[43]曹渐华, 刘熙明, 李国平, 等, 2015.鄱阳湖地区湖陆风特征及成因分析[J].高原气象, 34(2):426-435. DOI:10.7522/j.issn.1000-0534.2013.00197.
[44]方楠, 阳坤, 拉珠, 等, 2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3):610-618. DOI:10.7522/j.issn.1000-0534.2016.0038.
[45]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j.issn.1000-0534.2016.00125.
[46]吕雅琼, 杨显玉, 马耀明, 2007.夏季青海湖局地环流及大气边界层特征的数值模拟[J].高原气象, 26(4):686-692.
[47]吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6):1205-1210.
[48]林必元, 李敏娴, 骆平, 1988.洞庭湖湖陆风特征与降水[J].南京气象学院学报, 11(1):78-88.
[49]苏东生, 胡秀清, 文莉娟, 等, 2018.青海湖热力状况对气候变化响应的数值研究[J].高原气象, 37(2):394-405. DOI:10.7522/j.issn.1000-0534.2017.00069.
[50]李强, 李永华, 周锁铨, 等, 2011.基于WRF模式的三峡地区局地下垫面效应的数值实验[J].高原气象, 30(1):83-93.
[51]唐滢, 黄安宁, 田栗嵘, 等, 2016.夏季太湖局地气候效应的数值模拟研究[J].气象科学, 36(5):647-654.
[52]万军山, 吕丹苗, 1994.夏季鄱阳湖水体温度场及其气温效应[J].应用气象学报, 5(3):374-379.
[53]许鲁君, 刘辉志, 曹杰, 2014.大理苍山-洱海局地环流的数值模拟[J].大气科学, 38(6):1198-1210.
[54]许鲁君, 刘辉志, 2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报, 73(4):789-802.
[55]闫立娟, 郑绵平, 魏乐军, 2016.近40年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘, 23(4):310-323.
[56]杨显玉, 文军, 2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 31(4):927-934.