陆地是地球气候系统的重要组成部分, 是人类生产生活的重要场所。陆地表面水资源、 生态系统和人类活动受到全球气候系统的影响, 对气候变化响应敏感。同时, 作为气候系统的下边界, 陆地也深刻地影响着局地乃至全球的大气环流和气候变化。因此, 准确而高分辨率的陆面过程模拟是模拟天气气候事件, 进而正确认识天气气候现象的重要前提。然而, 现代陆面过程模拟仍然存在很大的不确定性, 主要来自于以下三个方面: 模式物理过程、 地表特征参数、 气象驱动数据。本文总结了陆面过程高分辨率模拟, 尤其是在高海拔山区模拟的不确定性来源, 重点分析了降水数据的非均匀分布特征对陆面过程模拟的重要影响。提出改进陆面过程模式, 提供更准确的地表特征参数分布, 开展对流允许尺度的动力降尺度研究, 可能是改善复杂地形条件降水模拟效果的有效途径, 进而准确模拟区域水循环, 实现陆面过程和区域气候模拟的最终目的。
Land is an important part of the earth's climate system and an important place for human life.Water resources, ecosystems and human activities over land are all affected by global climate systems and are sensitively respond to climate changes.At the same time, as the lower boundary for the climate system, land exerts an important feedback on regional weather and climate system.Therefore, accurate, and high-resolution land surface simulation is an important prerequisite for simulating weather climate events and correctly understanding weather climate phenomenon.However, there is still great uncertainty in modern land surface processes simulations.The uncertainty of land surface process simulation comes from three aspects: model physical process, surface characteristic parameters, and meteorological driven data.This study summarizes the sources of uncertainty in high - resolution simulations of land surface processes, especially in high altitude mountains, focusing on the important impact of heterogeneous distribution characteristics of precipitation data on land surface process simulation.Improving land surface process model, providing realistic distribution of surface characteristic parameters, and carrying out dynamical downscaling simulation at convection permitting scale based on the high-resolution land surface statements may be an effective way to improve precipitation simulation for complex terrains.We aim to accurately simulate regional water circulation and realize the ultimate purpose of land surface process and regional climate simulation.
[1]AdamJ C, LettenmaierD P, 2003.Adjustment of global gridded precipitation for systematic bias[J].Journal of Geophysical Research: Atmospheres, 108(D9): D94257, 1-15.DOI: 10.1029/2002jd002499.
[2]AyersJ, FicklinD L, StewartI T, alet, 2016.Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin[J].International Journal of Climatology, 36(11): 3807-3818.DOI: 10.1002/joc.4594.
[3]BroxtonP D, ZengX B, DawsonN, 2016.Why do global reanalyses and land data assimilation products underestimate snow water equivalent?[J].Journal of Hydrometeorology, 17(11): 2743-2761.DOI: 10.1175/jhm-d-16-0056.1.
[4]ChenA F, ChenD L, Azorin-MolinaC, 2018.Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets[J].International Journal of Climatology, 38(11): 4314-4334.DOI: 10.1002/joc.5670.
[5]ChenD L, XuB Q, YaoT D, alet, 2015.Assessment of past, present and future environmental changes on the Tibetan Plateau[J].Chinese Science Bulletin, 60(32): 3025-3035.DOI: 10.1360/n972014-01370.
[6]ChenF, DudhiaJ, 2001.Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system.Part I: Model implementation and sensitivity[J].Monthly Weather Review, 129(4): 569-585.DOI: 10.1175/1520-0493(2001)129<0569: Caalsh>2.0.Co; 2.
[7]ChenF, KusakaH, BornsteinR, alet, 2011.The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems[J].International Journal of Climatology, 31(2): 273-288.DOI: 10.1002/joc.2158.
[8]ChenF, ManningK W, LemoneM A, alet, 2007.Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system[J].Journal of Applied Meteorology and Climatology, 46(6): 694-713.DOI: 10.1175/jam2463.1.
[9]ChenF, ManningK W, YatesD N, alet, 2009.Development of high resolution land data assimilation system and its application to WRF[R].Boulder, CO: National Center for Atmospheric Research.
[10]ChenF, MitchellK, SchaakeJ, alet, 1996.Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J].Journal of Geophysical Research-Atmospheres, 101(D3): 7251-7268.DOI: 10.1029/95jd02165.
[11]CuoL, ZhangY X, PiaoS L, alet, 2016.Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau[J].Biogeosciences, 13(12): 3533-3548.DOI: 10.5194/bg-13-3533-2016.
[12]DaiY J, XinQ C, WeiN, alet, 2019.A global high-resolution data set of soil hydraulic and thermal properties for Land Surface Modeling[J].Journal of Advances in Modeling Earth Systems, 11(9): 2996-3023.DOI: 10.1029/2019ms001784.
[13]DaiY J, ZengQ C, 1997.A Land Surface Model (IAP94) For clima studies part I: Formulation and validation in off-line experiments[J].Advances in Atmospheric Sciences, 14(4): 433-460.
[14]National Center for Atmospheric Research, Boulder, (United States)CO.Scientific Computing Div.PB-94-106150/XAB; NCAR/TN-387+STR United States NTIS GRA English.
[15]DickinsonR E, Henderson-SellersA, KennedyP J, alet, 1986.Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model[R].Colorado: Atmospheric Research Boulder.
[16]DouvilleH, 2009.Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study[J].Climate Dynamics, 34(6): 797-818.DOI: 10.1007/s00382-008-0508-1.
[17]EstoqueR C, MurayamaY, MyintS W, 2017.Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J].Science of the Total Environment, 577: 349-359.DOI: 10.1016/j.scitotenv.2016.10.195.
[18]FanY X, MaZ Q, MaY M, alet, 2021.Respective advantages of “Top-Down” based GPM IMERG and “Bottom-Up” based SM2RAIN-ASCAT precipitation products over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 126(7): 1-17.DOI: 10.1029/2020jd033946.
[19]FangH, 2009.Document for Global Land Data Assimilation System (GLDAS) Products[R].Services and Application from NASA Hydrology Data and Information Services Center (HDISC).
[20]GaoX J, ShiY, ZhangD, alet, 2012a.Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations[J].Climate Research, 52: 213-226.DOI: 10.3354/cr01084.
[21]GaoX J, ShiY, ZhangD F, alet, 2012b.Climate change in China in the 21st century as simulated by a high resolution regional climate model[J].Chinese Science Bulletin, 57(10): 1188-1195.DOI: 10.1007/s11434-011-4935-8.
[22]GaoX J, XuY, ZhaoZ C, alet, 2006.On the role of resolution and topography in the simulation of East Asia precipitation[J].Theoretical and Applied Climatology, 86(1/4): 173-185.DOI: 10. 1007/s00704-005-0214-4.
[23]GaoY C, LiuM F, 2013.Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J].Hydrology and Earth System Sciences, 17(2): 837-849.DOI: 10.5194/hess-17-837-2013.
[24]GaoY H, ChenD L, 2017.Modeling of Regional Climate over the Tibetan Plateau[C]//Oxford Research Encyclopedia of Climate Science.New York: Oxford University Press, 1-29.
[25]GaoY H, ChenF, BarlageM, alet, 2008.Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China[J].Journal of Geophysical Research-Atmospheres, 113(D20), 1-19.DOI: 10.1029/2008jd010359.
[26]GaoY H, ChenF, JiangY S, 2020a.Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J].Journal of Hydrometeorology, 21(7): 1531-1548.DOI: 10.1175/jhm-d-19-0277.1.
[27]GaoY H, ChenF, LettenmaierD P, alet, 2018.Does elevation-dependent warming hold true above 5000m elevation? Lessons from the Tibetan Plateau[J].Npj Climate and Atmospheric Science, 1: 1-7.DOI: 10.1038/s41612-018-0030-z.
[28]GaoY H, ChenF, Miguez-MachoG, alet, 2020b.Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J].Climate Dynamics, 55: 1-17.DOI: 10.1007/s00382-020-05426-9.
[29]GaoY H, LeungL R, ZhangY X, alet, 2015b.Changes in moisture flux over the Tibetan Plateau during 1979-2011: Insights from a high-resolution simulation[J].Journal of Climate, 28(10): 4185-4197.DOI: 10.1175/jcli-d-14-00581.1.
[30]GaoY H, LiK, ChenF, alet, 2015c.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research-Atmospheres, 120(18): 9258-9278.DOI: 10.1002/2015jd023404.
[31]GaoY H, LvS H, ChengG D, 2004.Simulation of rainfall and watershed convergence process in upper reaches of Heihe River Basin, July 2002[J].Science in Chin (Earth Sciences a), 47(Suppl): 1-8.
[32]GaoY H, XiaoL H, ChenD L, alet, 2017.Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau[J].Climate Dynamics, 48(5/6): 1705-1721.DOI: 10.1007/s00382-016-3168-6.
[33]GaoY H, XuJ W, ChenD L, 2015a.Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J].Journal of Climate, 28(7): 2823-2841.DOI: 10.1175/jcli-d-14-00300.1.
[34]GiorgiF, BatesG T, NiemanS J, 1992.Simulation of the arid climate of the Southern Great-Basin using a regional climate model[J].Bulletin of the American Meteorological Society, 73(11): 1807-1822.DOI: 10.1175/1520-0477(1992)073<1807: Sotaco>2.0.Co; 2.
[35]GoodisonB E, LouieP Y, YangD Q, 1998.WMO solid precipitation measurement intercomparison[R].WMO: Instruments and Observing Methods Report No.67.
[36]GuH P, JinJ M, WuY H, alet, 2013.Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J].Climatic Change, 129(3/4): 471-483.DOI: 10.1007/s10584-013-0978-y.
[37]GuoZ C, DirmeyerP A, HuZ Z, alet, 2006.Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2.Sensitivity to external meteorological forcing[J].Journal of Geophysical Research, 111(D22), 1-11.DOI: 10.1029/2006jd007845.
[38]HallD K, RiggsG A, SalomonsonV V, 1995.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J].Remote Sensing of Environment, 54(2): 127-140.
[39]HuZ Y, ZhouQ M, ChenX, alet, 2018.Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations[J].International Journal of Climatology, 38(9): 3475-3493.DOI: 10.1002/joc.5510.
[40]HuangA N, Lazhu, WangJ B, alet, 2019.Evaluating and Improving the Performance of Three 1-D Lake Models in a Large Deep Lake of the Central Tibetan Plateau[J].Journal of Geophysical Research-Atmospheres, 124(6): 3143-3167.DOI: 10.1029/2018jd029610.
[41]ImmerzeelW W, PetersenL, RagettliS, alet, 2014.The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas[J].Water Resources Research, 50(3): 2212-2226.DOI: 10.1002/2013wr014506.
[42]ImmerzeelW W, WandersN, LutzA F, alet, 2015.Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff[J].Hydrology and Earth System Sciences Discussions, 12(5): 4755-4784.DOI: 10.5194/hessd-12-4755-2015.
[43]IPCC, 2007.Climate Change 2007-The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC[R].32 Avenue of the Americas, New York, NY 10013-2473, USA: Cambridge University Press.
[44]JiJ J, 1995.A climate-vegetation interaction model: Simulating physical and biological processes at the surface[J].Journal of Biogeography, 22(2/3): 445-451.
[45]JiJ J, HuY C, 1989.A simple land surface processes model for use in climate study[J].Acta Meteorologica Sinica, 3(3): 342-351.
[46]JiZ M, KangS C, 2013.Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J].Journal of the Atmospheric Sciences, 70(4): 1278-1290.DOI: 10.1175/jas-d-12-0155.1.
[47]JiangY S, ChenF, GaoY H, alet, 2019.Using Multisource Satellite Data to Assess Recent Snow-Cover Variability and Uncertainty in the Qinghai-Tibet Plateau[J].Journal of Hydrometeorology, 20(7): 1293-1306.DOI: 10.1175/jhm-d-18-0220.1.
[48]JiangY S, ChenF, GaoY H, alet, 2020.Assessment of Uncertainty Sources in Snow Cover Simulation in the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 125(18), 1-17.DOI: 10.1029/2020jd032674.
[49]Lawrence D, Fisher R, Koven C, et al, 2020.Technical description of version 5.0 of the Community Land Model (CLM)[Z].Boulder, Colorado: National Center for Atmospheric Research (NCAR).
[50]LetcherT W, MinderJ R, 2015.Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain[J].Journal of Climate, 28(19): 7576-7595.DOI: 10.1175/jcli-d-15-0166.1.
[51]LeungL R, KuoY H, TribbiaJ, 2006.Research needs and directions of regional climate modeling using WRF and CCSM[J].Bulletin of the American Meteorological Society, 87(12): 1747-1752.DOI: 10.1175/bams-87-12-1747.
[52]LiH D, ZhouY Y, WangX, alet, 2019.Quantifying urban heat island intensity and its physical mechanism using WRF/UCM[J].Science of the Total Environment, 650: 3110-3119.DOI: 10. 1016/j.scitotenv.2018.10.025.
[53]LiX, ChengG D, LinH, alet, 2018.Watershed system model: The essentials to model complex human-nature system at the river basin scale[J].Journal of Geophysical Research: Atmospheres, 123(6): 3019-3034.DOI: 10.1002/2017jd028154.
[54]LiuS H, HuY, HuF, alet, 2005.Numerical simulation of land-atmosphere interaction and oasis effect over oasis-desert[J].Chinese Journal of Geophysics, 48(5): 1019-1027.
[55]LiuX, ChenF, BarlageM, alet, 2016.Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model[J].Journal of Geophysical Research: Atmospheres, 121(23): 13953-13972.DOI: 10.1002/2016jd025597.
[56]MaY Z, TangG Q, LongD, alet, 2016.Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J].Remote Sensing, 8(7), 1-17.DOI: 10.3390/rs8070569.
[57]MaZ Q, XuJ T, ZhuS Y, alet, 2020.AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000-2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE[J].Earth System Science Data, 12(3): 1525-1544.DOI: 10.5194/essd-12-1525-2020.
[58]MargulisS A, MclaughlinD, EntekhabiD, alet, 2002.Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment[J].Water Resources Research, 38(12): 1-18.DOI: 10.1029/2001wr001114.
[59]MaussionF, SchererD, M?lgT, alet, 2014.Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis[J].Journal of Climate, 27(5): 1910-1927.DOI: 10.1175/jcli-d-13-00282.1.
[60]MearnsL, TeamN, 2009.The North American Regional Climate Change Assessment Program (NARCCAP): Overview of Phase II results[J].IOP Conference Series: Earth and Environmental Science, 6(2), 1-1.DOI: 10.1088/1755-1307/6/2/022007.
[61]MiddelA, HaebK, BrazelA J, alet, 2014.Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones[J].Landscape and Urban Planning, 122: 16-28.DOI: 10.1016/j.landurbplan.2013.11.004.
[62]MitchellK E, 2004.The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J].Journal of Geophysical Research, 109(D7), 1-32.DOI: 10.1029/2003jd003823.
[63]NunesE L, CostaM H, MalhadoA C M, alet, 2012.Monitoring carbon assimilation in South America's tropical forests: Model specification and application to the Amazonian droughts of 2005 and 2010[J].Remote Sensing of Environment, 117: 449-463.DOI: 10.1016/j.rse.2011.10.022.
[64]OlesonK W, DaiY, BonanG, alet, 2004, Technical description of the Community Land Model (CLM)[DB/OL].Boulder, Colorado: National Center For Atmospheric Research.NCAR/TN_461+STR, NCAR TECHNICAL NOTE.[2021-04-10].https: //www.researchgate.net/publication/200041856_Technical_ Description_of_the_ Community_ Land_Model_CLM.
[65]OlesonK W, LawrenceD M, BonanG B, alet, 2013, Technical Description of version 4.5 of the Community Land Model (CLM)[DB/OL].NCAR/TN-503+STR NCAR Technical Note.[2021-04-10].https: //opensky.ucar.edu/ islandora/object/technotes: 515.
[66]OnolB, BozkurtD, TuruncogluU U, alet, 2014.Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean-Black Sea region[J].Climate Dynamics, 42(7/8): 1949-1965.DOI: 10.1007/s00382-013-1966-7.
[67]PanY J, LyuS H, LiS S, alet, 2017.Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J].Theoretical and Applied Climatology, 127(3/4): 1011-1022.DOI: 10.1007/s00704-015-1684-7.
[68]PepinN, BradleyR S, DiazH F, alet, 2015.Elevation-dependent warming in mountain regions of the world[J].Nature Climate Change, 5(5): 424-430.DOI: 10.1038/nclimate2563.
[69]PicklerC, M?lgT, 2021.General Circulation Model Selection Technique for Downscaling: Exemplary Application to East Africa[J].Journal of Geophysical Research: Atmospheres, 126(6), 1-28.DOI: 10.1029/2020jd033033.
[70]PreinA F, HollandG J, RasmussenR M, alet, 2013.Importance of Regional Climate Model Grid Spacing for the Simulation of Heavy Precipitation in the Colorado Headwaters[J].Journal of Climate, 26(13): 4848-4857.DOI: 10.1175/jcli-d-12-00727.1.
[71]PreinA F, LanghansW, FosserG, alet, 2015.A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges[J].Reviews of Geophysics, 53(2): 323-361.DOI: 10.1002/2014RG000475.
[72]RasmussenR, LiuC, IkedaK, alet, 2011.High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate[J].Journal of Climate, 24(12): 3015-3048.DOI: 10.1175/2010jcli3985.1.
[73]RoyS, ByrneJ, PickeringC, 2012.A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones[J].Urban Forestry & Urban Greening, 11(4): 351-363.DOI: 10.1016/j.ufug.2012.06.006.
[74]Ruiz-BarradasA, NigamS, 2006.IPCC’s twentieth-century climate simulations: Varied representations of North American hydroclimate variability[J].Journal of Climate, 19(16): 4041-4058.
[75]SanjayJ, KrishnanR, ShresthaA B, alet, 2017.Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models[J].Advances in Climate Change Research, 8(3): 185-198.DOI: 10.1016/j.accre.2017.08.003.
[76]ScholesR J, 2016.Climate change and ecosystem services[J].Wiley Interdisciplinary Reviews: Climate Change, 7(4): 537-550.DOI: 10.1002/wcc.404.
[77]SellersP J, MintzY, SudY C, alet, 1986.A Simple Biosphere Model (SIB) for Use within General Circulation Models[J].Journal of Atmospheric Sciences, 43(6): 505-531.
[78]SellersP J, RandallD A, CollatzG J, alet, 1996.A revised land surface parameterization (SiB2) for atmospheric GCMS.Part I: Model formulation[J].Journal of Climate, 9(4): 676-705.DOI: 10.1175/1520-0442(1996)009<0676: Arlspf>2.0.Co; 2.
[79]ShangguanW, DaiY, DuanQ, alet, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems, 6(1): 249-263.DOI: 10.1002/2013ms000293.
[80]Shashua-BarL, PearlmutterD, ErellE, 2009.The cooling efficiency of urban landscape strategies in a hot dry climate[J].Landscape and Urban Planning, 92(3/4): 179-186.DOI: 10.1016/j.landurbplan.2009.04.005.
[81]StovinV, VesuvianoG, KasminH, 2012.The hydrological performance of a green roof test bed under UK climatic conditions[J].Journal of Hydrology, 414: 148-161.DOI: 10.1016/j.jhydrol. 2011.10.022.
[82]SuF G, DuanX L, ChenD L, alet, 2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].Journal of Climate, 26(10): 3187-3208.DOI: 10.1175/jcli-d-12-00321.1.
[83]SunZ, JiaS F, LvA F, alet, 2015.Assesment on precision of temperature simulated by the IPCC AR5 GCMs in China, 1996-2005[J].Progress in Geography, 34(10): 1229-1240.
[84]SwensonS C, LawrenceD M, 2012.A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance[J].Journal of Geophysical Research: Atmospheres, 117(D21), 1-20.DOI: 10.1029/2012jd018178.
[85]TongK, SuF G, YangD Q, alet, 2014.Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J].International Journal of Climatology, 34(2): 265-285.DOI: 10.1002/joc.3682.
[86]VionnetV, SixD, AugerL, alet, 2019.Sub-kilometer precipitation datasets for snowpack and glacier modeling in alpine terrain[J].Frontiers in Earth Science, 7: 1-21.DOI: 10.3389/feart.2019. 00182.
[87]WangA H, ZengX B, 2011.Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China[J].Journal of Geophysical Research, 116(D2), 1-11.DOI: 10.1029/2010jd014659.
[88]WangL, LiX P, ChenY Y, alet, 2016.Validation of the global land data assimilation system based on measurements of soil temperature profiles[J].Agricultural and Forest Meteorology, 218-219: 288-297.DOI: 10.1016/j.agrformet.2016.01.003.
[89]WangX Y, MiaoS G, LiuH N, alet, 2019.Assessing the impact of urban hydrological processes on the summertime urban climate in Nanjing using the WRF model[J].Journal of Geophysical Research-Atmospheres, 124(23): 12683-12707.DOI: 10.1029/2019jd030674.
[90]WeiS G, DaiY J, DuanQ Y, alet, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems, 6(1): 249-263.DOI: 10.1002/2013ms000293.
[91]WenL J, LvS H, LiZ G, alet, 2015a.Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River Source Region of the Tibetan Plateau[J].Advances in Meteorology, 2015: 1-10.DOI: 10.1155/2015/248031.
[92]WenL J, LyuS H, KirillinG, alet, 2016.Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J].Tellus A: Dynamic Meteorology and Oceanography, 68(1), 1-15.DOI: 10.3402/tellusa.v68.31091.
[93]WenL J, NagabhatlaN, ZhaoL, alet, 2015b.Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake[J].Chinese Journal of Oceanology and Limnology, 33(3): 790-801.
[94]WuL, ZhaiP M, 2013.Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J].Acta Meteorologica Sinica, 26(6): 735-745.DOI: 10.1007/s13351-012-0605-2.
[95]XiaoZ X, DuanA M, 2016.Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon[J].Journal of Climate, 29(23): 8495-8514.DOI: 10.1175/jcli-d-16-0029.1.
[96]XueY, HouserP R, MaggioniV, alet, 2021.Evaluation of high mountain Asia-land data assimilation system (Version 1) from 2003 to 2016, Part I: A hyper-resolution terrestrial modeling system[J].Journal of Geophysical Research: Atmospheres, 126(8), 1-32.DOI: 10.1029/2020jd034131.
[97]XueY K, ZengF J, SchlosserC A, 1996.SSiB and its sensitivity to soil properties-A case study using HAPEX-Mobilhy data[J].Global and Planetary Change, 13(1/4): 183-194.DOI: 10. 1016/0921-8181(95)00045-3.
[98]YangD Q, KaneD, ZhangZ P, alet, 2005.Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions[J].Geophysical Research Letters, 32(19): 1-5.DOI: 10.1029/2005gl024057.
[99]YangK, 2005.Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J].Journal of Geophysical Research, 110(D8).DOI: 10.1029/2004jd005500.
[100]YangK, ChenY Y, QinJ, 2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences, 13(5): 687-701.
[101]YangK, QinJ, GuoX F, alet, 2009.Method Development for Estimating Sensible Heat Flux over the Tibetan Plateau from CMA Data[J].Journal of Applied Meteorology and Climatology, 48(12): 2474-2486.DOI: 10.1175/2009jamc2167.1.
[102]YangM X, WangS L, YaoT D, alet, 2004.Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau[J].Cold Regions Science and Technology, 39(1): 47-53.DOI: 10.1016/j.coldregions.2004.01.002.
[103]YangX, WoodE F, SheffieldJ, alet, 2018.Bias Correction of Historical and Future Simulations of Precipitation and Temperature for China from CMIP5 Models[J].Journal of Hydrometeorology, 19(3): 609-623.DOI: 10.1175/jhm-d-17-0180.1.
[104]YangY, ChenR S, SongY X, 2014.An Overview of Measurement and Calculation Methods on the Land Surface Temperature on Alpine Mountainous Cold Regions[J].Advance in Earth Sciences, 29(12): 1383-1393.
[105]YangZ L, DickinsonR E, RobockA, alet, 1997.Validation of the Snow Submodel of the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data[J].Journal of Climate, 10: 353-373.
[106]YeB S, YangD Q, DingY J, alet, 2004.A bias-corrected precipitation climatology for China[J].Journal of Hydrometeorology, 5(6): 1147-1160.
[107]YoonY, KumarS V, FormanB A, alet, 2019.Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia[J].Frontiers in Earth Science, 7: 21, 1-21.DOI: 10. 3389/feart.2019.00120.
[108]IEEE, 2003: 2644-2646.
[109]ZhangG, ChenF, GanY J, 2016.Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign[J].Journal of Geophysical Research-Atmospheres, 121(16): 9576-9596.DOI: 10.1002/2016jd024928.
[110]ZhangZ, BarlageM, ChenF, alet, 2020.Joint modeling of crop and irrigation in the central United States using the Noah-MP Land Surface Model[J].Journal of Advances in Modeling Earth Systems, 12(7), 1-19.DOI: 10.1029/2020ms002159.
[111]ZhangZ H, WangW Z, MaM G, alet, 2010.Data processing and product analysis of eddy covariance flux data for WATER[J].Remote Sensing Technology and Application, 25(6): 788-796.
[112]ZhaoL, LiY N, XuS X, alet, 2006.Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai--Tibetan plateau[J].Global Change Biology, 12(10): 1940-1953.DOI: 10.1111/j.1365-2486.2006.01197.x.
[113]ZhengD H, Van Der VeldeR, SuZ B, alet, 2017.Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem[J].Journal of Hydrometeorology, 18(6): 1749-1763.DOI: 10.1175/jhm-d-16-0199.1.
[114]ZhongZ, LuW, SongS, alet, 2011.A new scheme for effective roughness length and effective zero-plane displacement in land surface models[J].Journal of Hydrometeorology, 12(6): 1610-1620.DOI: 10.1175/2011jhm1375.1.
[115]ZhouF H, ZhangR W, ShiR, alet, 2017.A study of data processing and quality assessment of the eddy convariance system off Yongxing Island[J].Journal of Tropical Oceanography, 36(4): 48-59.
[116]ZhouX, BeljaarsA, WangY, alet, 2017.Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 122(18): 9759-9772.DOI: 10.1002/2017jd027212.
[117]戴永久, 2020.陆面过程模式研发中的问题[J].大气科学学报, 43(1): 33-38.DOI: 10.13878/j.cnki.dqkxxb.20200103006.
[118]符淙斌, 马柱国, 2008.全球变化与区域干旱化[J].大气科学, 32(4): 752-760.
[119]高艳红, 程国栋, 崔文瑞, 2006.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展, 21(12): 1283-1292.
[120]高艳红, 伟 刘, 李海英, 等, 2007.黑河流域土壤质地分类数据建立及其模拟效果检验[J].高原气象, 26(5): 967-974.
[121]李文耀, 魏楠, 黄丽娜, 等, 2020.土壤数据集对全球陆面过程模拟的影响[J].气候与环境研究, 25(5): 555-574.DOI: 10.3878/j.issn.1006-9585.2020.20025.
[122]刘伟, 高艳红, 李海英, 等, 2007.黑河流域土地覆盖分类数据的建立及其影响的模拟[J].高原气象, 26(2): 278-285.
[123]水利部黄河水利委员国际合作与科技局, 2008.黄河流域气候变化影响及水资源评估报告[R/OL].郑州: 水利部黄河水利委员会国际合作与科技局.[2020-12-25].https: //max.book118.com/html/2017/0627/118370995.shtm.
[124]吴龙刚, 王爱慧, 盛炎平, 2014.土壤质地对中国区域陆面过程模拟的影响[J].气候与环境研究, 19(5): 559-571.DOI: 10. 3878/j.issn.1006-9585.2013.13055.
[125]武洁, 高艳红, 潘永洁, 等, 2020.青藏高原中东部地区土壤湿度模拟性能评估以及误差分析[J].地球物理学报, 63(6): 2184-2198.
[126]姚檀栋, 冯仁国, 陈德亮, 2015.西藏高原环境变化科学评估[R].北京: 中国科学院.
[127]朱连奇, 许立民, 2011.全球变化对陆地生态系统的影响研究[J].地域研究与开发, 30(2): 161-164.