论文

近60年来祁连山极端气温变化研究

  • 吕越敏 ,
  • 李宗省 ,
  • 冯起 ,
  • 李永格 ,
  • 袁瑞丰 ,
  • 桂娟 ,
  • 李宗杰 ,
  • 张百娟
展开
  • 中国科学院西北生态环境资源研究院/内陆河流域生态水文重点实验室, 甘肃 兰州 730000;中国科学院大学, 北京 100049

收稿日期: 2018-09-18

  网络出版日期: 2019-10-28

基金资助

国家"万人计划"青年拔尖人才项目;中国科学院青年创新促进会优秀会员项目(2013274);国家重点研发计划项目(2017YFC0404304);中国科学院山地灾害与地表过程重点实验室开放基金项目;黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1814)

Analysis of Extreme Temperature Changes in Qilian Mountains in the Past 60 Years

  • Lü Yuemin ,
  • LI Zongxing ,
  • FENG Qi ,
  • LI Yongge ,
  • YUAN Ruifeng ,
  • GUI Juan ,
  • LI Zongjie ,
  • ZHANG Baijuan
Expand
  • Key laboratory of Eco-Hydrology of inland river basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-09-18

  Online published: 2019-10-28

摘要

利用24个气象站点1961-2017年逐日最高、最低和平均气温资料,采用CCl/CLIVAR气候变化检测监测和指数专家小组(ETCCDI)所推荐的12个极端气温指数,分析了祁连山区极端气温指数的时空变化及其原因。结果表明:极端气温暖指数以祁连山中部和东部为较小变暖幅度区,向外围递增,极端气温冷指数的空间分布由南向北递减。相较暖指数,冷指数变暖幅度更大;夜指数变暖幅度大于昼指数,这与气温日较差显著减少具有一致性;生长季长度明显延长;冰冻日数、霜冻日数显著减少,减少幅度较大的区域集中在祁连山南部。1985年后尤其在20世纪90年代期间祁连山加速变暖,2000年后变暖趋势有所减缓,2010年后变暖幅度大幅增加。海拔越高,极端气温指数的变暖幅度越大,高海拔区(>2500 m)极端气温冷指数变化明显,低海拔区(< 2500 m)极端气温暖指数变化明显。北大西洋年代际振荡(Atlantic Multidecadal Oscillation,AMO)、热带北大西洋指数(Tropical Northern Atlantic Index,TNA)、热带南大西洋指数(Tropical Southern Atlantic Index,TSA)、北热带大西洋海表温度指数(North Tropical Atlantic Index,NTA)、加勒比地区海温指数(Caribbean Index,CAR)对祁连山极端气温暖指数的影响强于极端气温冷指数,中热带太平洋海温(Nino 4)主要影响极端气温冷指数,南海夏季风(South China Sea Summer Monsoon Index,SCSSMI)主要影响极端气温暖指数。

本文引用格式

吕越敏 , 李宗省 , 冯起 , 李永格 , 袁瑞丰 , 桂娟 , 李宗杰 , 张百娟 . 近60年来祁连山极端气温变化研究[J]. 高原气象, 2019 , 38(5) : 959 -970 . DOI: 10.7522/j.issn.1000-0534.2018.00135

Abstract

Based on the daily maximum, daily minimum and average air temperature data of 24 meteorological stations from 1961 to 2017, 12 extreme air temperature indices recommended by the CCl/CLIVAR climate change monitoring and indices expert group were used to analyze the temporal and spatial variations of extreme air temperature indices in Qilian Mountains and the characteristic of the temporal and spatial variations are explained. The results showed that:The spatial distribution of warm indices increases to the periphery with the central and eastern part of Qilian Mountains as the region with smaller warming range. The spatial distribution of cold indices decreases from the south to the north. In contrast to warm extremes, indices that related to cold extremes showed warmer trend. The warming range of night indices is larger than day indices, which is consistent with the significant decrease of diurnal temperature range. The length of growing season length was significantly longer. The number of ice days and frost days significantly decreased, and the areas with large reduction were concentrated in the south of Qilian Mountains. After 1985, especially during the 1990s, the warming trend of Qilian Mountains accelerated. After 2000, the warming trend slowed down, and after 2010, the warming rate increased significantly. The extreme temperature indices have a good correlation with altitude. The higher altitude, the greater warming of extreme temperature indices. In the high-altitude area (>2500 m), the extreme temperature cold indices changes significantly, while in the low altitude area (< 2500 m), the extreme temperature warm indices changes significantly. The effect of the circulation index of Atlantic multidecadal Oscillation, Tropical Northern Atlantic Index, Tropical Southern Atlantic Index, North Tropical Atlantic SST Index, Caribbean SST Index on the extreme temperature warm index was stronger than that of extreme temperature cold index. Central Tropical Pacific SST mainly affects the extreme temperature cold indices, while South China Sea Summer Monsoon Index mainly affects the extreme temperature warm indices.

参考文献

[1]Aguilar E, Barry A A, Brunet M, et al, 2009. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955-2006[J]. Journal of Geophysical Research Atmospheres, 114(D2):356-360.
[2]Alexander L V, Zhang X, Peterson T C, et al, 2006. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 111(D5):1042-1063.
[3]Caesar J, Alexander L V, Trewin B, et al, 2011. Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005[J]. International Journal of Climatology, 31(6):791-801.
[4]Changnon S A, Pielke R A J, Changnon D, et al, 2000. Human factors explain the increased losses from weather and climate extremes[J]. Bulletin of the American Meteorological Society, 81(3):437-442.
[5]Choi G, Collins D, Ren G Y, et al, 2009. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955-2007[J]. International Journal of Climatology, 29(13):1906-1925.
[6]Delworth T L, Mann M E, 2000. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 16(9):661-676.
[7]Easterling D R, Evans J L, Groisman P Y, et al, 2000. Observed variability and trends in extreme climate events:A brief review[J]. Bulletin of the American Meteorological Society, 81(3):417-426.
[8]Folland C K, Palmer T N, Parker D E, 1986. Sahel rainfall and worldwide sea temperatures, 1901-1985[J]. Nature, 320(6063):602-607.
[9]Gong D Y, Pan Y Z, Wang J A, 2004. Changes in extreme daily mean temperatures in summer in eastern China during 1955-2000[J]. Theoretical &amp; Applied Climatology, 77(1/2):25-37.
[10]Guan Y, Zheng F, Zhang X, et al, 2015. Trends and variability of daily precipitation and extremes during 1960-2012 in the Yangtze River Basin, China[J]. Global &amp; Planetary Change, 124(3):79-94.
[11]IPCC, 2013. Summary for policymakers. In: Climate change 2013: The physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[R]. Stocker T F, Qin D H, Plattner G K, et al, eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[12]IPCC, 2014. Summary for policymakers. In: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group Ⅱ to the fifth assessment report of the intergovernmental panel on climate change[R] Field C B, Barros V R, Dokken D J, et al. eds. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA, 1-32.
[13]Jia W X, 2016. Temporal and spatial variations in extreme temperatures in the Qilian Mountains-Hexi Corridor over the period 1960-2013[J]. Journal of Mountain Science, 13(12):2224-2236.
[14]Li Z, He Y, Theakstone W H, et al, 2012. Altitude dependency of trends of daily climate extremes in southwestern China, 1961-2008[J]. Journal of Geographical Sciences, 22(3):416-430.
[15]Lin P F, He Z B, Du J, et al, 2017. Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China's Qilian Mountains[J]. Science Reports, 7(1):1-15.
[16]Peterson T, Folland C, Gruza G, et al, 2001. Report on the activities of the working group on climate change detection and related rapporteurs[M]. Geneva:World Meteorological Organization.
[17]Plummer N, Salinger M J, Nicholls N, et al, 1999. Changes in climate extremes over the Australian region and New Zealand during the twentieth century[J]. Climatic Change, 42(1):183-202.
[18]Zhou Y, Ren G, 2011. Change in extreme temperature event frequency over mainland China during 1961-2008[J]. Climate Research, 50(1/2):125-139.
[19]曹广超, 付建新, 李玲琴, 等, 2018.1960-2014年祁连山南坡及其附近地区气温时空变化特征[J].水土保持研究, 25(3):88-96.
[20]丁之勇, 董义阳, 鲁瑞洁, 2018.1960-2015年中国天山南、北坡与山区极端气温时空变化特征[J].地理科学, 38(8):1379-1390.
[21]杜军, 路红亚, 建军, 2013.1961-2010年西藏极端气温事件的时空变化[J].地理学报, 68(9):1269-1280.
[22]杜军, 路红亚, 袁雷, 等, 2016.近42a珠穆朗玛峰地区极端气温事件的时空变化[J].干旱区研究, 33(1):20-27.
[23]高妍, 冯起, 李宗省, 等, 2014.祁连山讨赖河流域19572012年极端气候变化[J].中国沙漠, 34(3):814-826.
[24]贾文雄, 2012.近50年来祁连山及河西走廊极端气温的季节变化特征[J].地理科学, 32(11):1377-1383.
[25]秦大河, Thomas S, 2014. IPCC第五次评估报告第一工作组报告的亮点结论[J].气候变化研究进展, 10(1):1-6.
[26]屈鹏, 郭东林, 2009.祁连山东部近50年气候特征变化分析[J].干旱区资源与环境, 23(12):66-70.
[27]任国玉, 封国林, 严中伟, 2010.中国极端气候变化观测研究回顾与展望[J].气候与环境研究, 15(4):337-353.
[28]王希强, 陈仁升, 刘俊峰, 2017.气候变化背景下祁连山区负积温时空变化特征分析[J].高原气象, 36(5):1267-1275. DOI:10.7522/j.issn.1000-0534.2016.00096.
[29]魏凤英, 1999.现代气候统计诊断与预测技术[M].北京:气象出版社.
[30]尹宪志, 张强, 徐启运, 等, 2009.近50年来祁连山区气候变化特征研究[J].高原气象, 28(1):85-90.
[31]于秀林, 任雪松, 1999.多元统计分析[M].北京:中国统计出版社.
[32]张扬, 白红英, 黄晓月, 等, 2018.近55 a秦岭山区极端气温变化及其对区域变暖的影响[J].山地学报, 36(1):23-33.
[33]赵锐锋, 苏丽, 祝稳, 2017.1961-2012年西北干旱区极端温度事件季节性时空分析[J].中国农学通报, 33(12):63-73.
[34]赵雪雁, 雒丽, 王亚茹, 等, 2014.1963-2012年青藏高原东缘极端气温变化特征及趋势[J].资源科学, 36(10):2113-2122.
[35]翟盘茂, 潘晓华, 2003.中国北方近50年温度和降水极端事件变化[J].地理学报, 58:1-10.
[36]周雅清, 任国玉, 2010.中国大陆1956-2008年极端气温事件变化特征分析[J].气候与环境研究, 15(4):405-417.
文章导航

/