论文

太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究

  • 孙玉稳 ,
  • 董晓波 ,
  • 李宝东 ,
  • 段英 ,
  • 胡向峰 ,
  • 杨洋 ,
  • 吕峰 ,
  • 樊荣 ,
  • 康增妹 ,
  • 王建恒 ,
  • 赵孝伟 ,
  • 杨永胜 ,
  • 范浩 ,
  • 李德俊
展开
  • 河北省气象与生态环境重点实验室/河北省人工影响天气办公室, 河北 石家庄 050021;河北省气象局, 河北 石家庄 050021;衡水市气象局, 河北 衡水 053000;邢台市气象局, 河北 邢台 054000;湖北省气象服务中心, 湖北 武汉 430205

收稿日期: 2018-01-23

  网络出版日期: 2019-10-28

基金资助

河北省"十三五"气象重点项目(hbrywcsy-2017-8);河北省气象与生态环境重点实验室开放研究基金项目(Z201602Z);国家重点研发计划项目(2018YFC1507900)

The Physical Properties and Seeding Potential Analysis of a Low Trough Cold Front Cloud System at Mountain Taihang based on Aircraft Observations

  • SUN Yuwen ,
  • DONG Xiaobo ,
  • LI Baodong ,
  • DUAN Ying ,
  • HU Xiangfeng ,
  • YANG Yang ,
  • Lü Feng ,
  • FAN Rong ,
  • KANG Zengmei ,
  • WANG Jianheng ,
  • ZHAO Xiaowei ,
  • YANG Yongsheng ,
  • FAN Hao ,
  • LI Dejun
Expand
  • key laboratory of meteorology and ecology of Hebei/Hebei weather modification office, Shiajiazhuang 050021, Hebei, China;Hebei Provincial Meteorological Bureau, Shiajiazhuang 050021, Hebei, China;Hengshui meteorological bureau, Hengshui 053000, Hebei, China;Xingtai meteorological bureau, Xingtai 054000, Hebei, China;Hubei Provincial Meteorological Service Center, Wuhan 430205, Hubei, China

Received date: 2018-01-23

  Online published: 2019-10-28

摘要

2017年5月22日河北省出现一次低槽冷锋降水过程,河北省人工影响天气办公室利用机载粒子测量系统在太行山东麓区域对积层混合云进行了5次垂直探测。依据这些飞机探测资料结合石家庄天气雷达和邢台皇寺观测站的Ka波段云雷达资料分析了积层混合云的微物理结构和增雨作业条件。结果表明,降水云系出现在低槽槽前西南气流中,积层混合云由冷、暖云组成,云厚大于5 km,暖云厚度大于2 km,冷云厚度大于3 km,0℃层高度位于3577~4004 m,云底温度为15.4℃,云顶温度为-17℃。云内出现最强雷达回波达45 dBZ的对流雨核,人工增雨作业应在雷达回波强度不超过40 dBZ,且4000 m以上雷达回波强度不超过30 dBZ积层混合云区实施增雨作业。嵌入对流核的积层混合云中,5000 m以上冷云中上层过冷水含量达0.2 g·m-3,比稳定的层状云中过冷水含量提高2~4倍;丰富的过冷水从雨核发展初期维持到雨核发展盛期,且该高度层是冰晶重要增长区,温度在-15~-5℃之间,适合催化作业。

本文引用格式

孙玉稳 , 董晓波 , 李宝东 , 段英 , 胡向峰 , 杨洋 , 吕峰 , 樊荣 , 康增妹 , 王建恒 , 赵孝伟 , 杨永胜 , 范浩 , 李德俊 . 太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究[J]. 高原气象, 2019 , 38(5) : 971 -982 . DOI: 10.7522/j.issn.1000-0534.2018.00112

Abstract

A cold front precipitation process caused by low trough occurred in Hebei province on May 22, 2017. The Hebei weather modification office used an airborne particle measurement system to carry out five vertical soundings for the stratiform clouds with embedded convections developed in the eastern Taihang mountain. In this paper, the microphysical structure of stratiform clouds with embedded convections and the conditions for cloud seeding were both analyzed based on the data from aircraft observations, The meteorological radar in Shijiazhuang and the Ka-band cloud radar at Huangsi, Xingtai. The precipitation clouds were found in the southwesterly air current before the low trough as the stratiform clouds with embedded convections were composed of both cold and warm clouds. Our results showed that the clouds were thicker than 5 km and the thicknesses of warm and cold clouds were greater than 2 km and 3 km respectively. The height of 0℃ layer was located at 3577~4004 m, while the temperature at the bottom and top of the clouds were 15.4℃ and -17℃ respectively. A 45 dBZ radar reflectivity was detected indicating as the strongest echo of convection bubble within the clouds. However, to carry out cloud seeding, the strongest radar echo should be less than 40 dBZ and in the seeding area of convective stratiform clouds above 4000 m the radar echo should be less than 30 dBZ. The supercooled water was found in the upper-middle layers of the cold cloud above 5000 m with a content of 0.2 g·m-3. This supercooled water content would be 2~4 times richer than that of stable stratiform clouds would contain. Besides, abundant supercooled water was observed along the initial and development stage of convective bubbles. Since this layer was the key area for ice crystal growth and the temperature varied from -15℃ to -5℃, this cloud was suitable for seeding.

参考文献

[1]Evans A G, Locatelli J D, Stoelinga M T, et al, 2005. The IMPROVE-1storm of l-2 February 2001. Part Ⅱ:C1oud structures and the growth precipitation[J]. Journal of the Atmospheric Sciences, 62(10):3456-3473.
[2]Frederic F, Zawadzki I, Cohn S, 1993. The influence of stratiform precipitation on shallow convective rain:A case study[J]. Monthly Weather Review, 121(12):3312-3325.
[3]Herzegh P H, Hobbs P V, 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅱ:warm-frontal clouds[J]. Journal of the Atmospheric Sciences, 37:597-611.
[4]Hobbs P V, Rangno A L, 1990. Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds[J]. Journal of the Atmospheric Sciences, 47(22):2710-2722.
[5]Hobbs P V, Locatelli J D, 1978. Rainbands, precipitation cores and generating cells in a cyclonic storm[J]. Journal of the Atmospheric Sciences, 35(2):230-241.
[6]Houze R A Jr, Rutledge S A, Matejka T J, et al, 1981. The mesoscale and microscale structure and organization 0f clouds and precipitation in midlatitude cyclones. Ⅲ:Air motions and precipitation growth in a warm-frontal rainband[J]. Journal of the Atmospheric Sciences, 38(3):639-649.
[7]Matejka T J, Houze R A Jr, Hobbs P V, 1980. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones[J]. Quarterly Journal of the Royal Meteorological Society, 106(447):29-56.
[8]Rutledge S A, Hobbs P, 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅷ:A model for the "seeder-feeder" process in warm-frontal rainbands[J]. Journal of the Atmospheric Sciences, 40(5):1185-1206.
[9]党娟, 刘卫国, 陶玥, 2016.一次降水性层积云系的微物理特征分析[J].高原气象, 35(6):16939-1649. DOI:10.7522/j.issn.1000-0534.2015.00104.
[10]洪延超, 1996a.积层混合云数值模拟研究(Ⅰ)-模式及其微物理过程参数化[J].气象学报, 54(5):544-557.
[11]洪延超, 1996b.积层混合云数值模拟研究(Ⅱ)-云相互作用及暴雨产生机制[J].气象学报, 54(6):661-674.
[12]黄美元, 洪延超, 吴玉霞, 1987a.梅雨锋云系和降水的若干研究[J].大气科学, 11(1):23-30.
[13]黄美元, 洪延超, 徐华英, 等, 1987b.层状云对积云发展和降水的影响-一种云与云之间影响的数值模拟[J].气象学报, 45(1):72-77.
[14]栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2):283-293. DOI:10.7522/j.issn.1000-0534.2016.00086.
[15]师宇, 楼小凤, 单云鹏, 等, 2017.北京地区一次降雪过程的人工催化数值模拟研究[J].高原气象, 36(5):1276-1289. DOI:10.7522/j.issn.1000-0534.2016.00116.
[16]孙玉稳, 李宝东, 刘伟, 等, 2015.河北秋季层状云物理结构及适播性分析[J].高原气象, 34(1):237-250. DOI:10.7522/j.issn.1000-0534.2013.00172.
[17]孙玉稳, 银燕, 孙霞, 等, 2017.冷云催化宏微观物理响应的探测与研究[J].高原气象, 36(5):1290-1303. DOI:10.7522/j.issn.1000-0534.2016.00113.
[18]陶玥, 李军霞, 党娟, 等, 2015.北京一次积层混合云系结构和水分收支的数值模拟分析[J].大气科学, 39(3):445-460.
[19]朱士超, 郭学良, 2015.华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究[J].大气科学, 39(2):370-384.
文章导航

/