论文

东亚、北非干旱半干旱区边界层高度的特征研究

  • 徐潇然 ,
  • 赵艳茹 ,
  • 黄山 ,
  • 毛文茜 ,
  • 郭燕玲 ,
  • 张文煜
展开
  • 兰州大学大气科学学院, 甘肃 兰州 730000;复旦大学大气与海洋科学系, 大气科学研究院, 上海 200438;甘肃省人工影响天气办公室, 甘肃 兰州 730000

收稿日期: 2018-03-29

  网络出版日期: 2019-10-28

基金资助

国家自然科学基金项目(41875085,41630421);甘肃省气象局气象科研项目(GSMAMs2018-16);兰州大学中央高校基本科研业务费专项资金(lzujbky-2018-k03)

Study on the Characteristics of Boundary Layer Height in Arid and Semiarid Regions of East Asia and North Africa

  • XU Xiaoran ,
  • ZHAO Yanru ,
  • HUANG Shan ,
  • MAO Wenqian ,
  • GUO Yanling ,
  • ZHANG Wenyu
Expand
  • College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China;Weather Modification Office of Gansu Province, Lanzhou 730000, Gansu, China

Received date: 2018-03-29

  Online published: 2019-10-28

摘要

采用再分析资料ERA-20C对东亚、北非干旱半干旱区一百多年边界层高度(Boundary Layer Height,BLH)的时空变化特征进行比较研究,结果揭示了两个地区不同气候区BLH空间分布和时间变化的差异性。结果表明,BLH的空间分布与气候干湿程度密切相关,同时受海拔以及河流、湖泊分布等的影响;干旱区、半干旱-半湿润过渡区的BLH在东亚和北非均为升高趋势;极端干旱区、干旱-半干旱过渡区、半干旱区的BLH在东亚为升高趋势,在北非为降低趋势;极端干旱区对干旱半干旱区整体BLH年际变化贡献最小,东亚为11.05%,北非为3.68%;东亚半干旱区年际变化贡献最大23.74%,北非半干旱-半湿润过渡区年际变化贡献最大28.89%。两个地区BLH的变化均包含周期为60年、30年、10年、5~7年和2~4年的振荡,在长时间尺度的周期变化中,两个地区的BLH基本呈反位相关系,在短时间尺度的周期变化中,呈反位相、同位相交替转换的关系;BLH的长期变化趋势,东亚各季节均为升高趋势,北非只有冬季为升高趋势;BLH年际变化,夏季占主导地位,东亚年际变化贡献率是58.50%,北非年际变化贡献率是57.52%,北非秋季年际变化贡献率是东亚地区的2倍多。

本文引用格式

徐潇然 , 赵艳茹 , 黄山 , 毛文茜 , 郭燕玲 , 张文煜 . 东亚、北非干旱半干旱区边界层高度的特征研究[J]. 高原气象, 2019 , 38(5) : 1038 -1047 . DOI: 10.7522/j.issn.1000-0534.2018.00144

Abstract

The Boundary Layer Height (BLH) of the arid and semiarid regions in East Asia and North Africa (19002010) is compared by using the reanalysis data of ERA-20C of the European center. The result reveals differences of spatial distribution and time variation of different climate zones' BLH in the two regions. It shows that there is a close relationship between the spatial distribution of the BLH and the degree of climate wetting and drying, and is also affected by the altitude and the distribution of rivers and lakes. The BLH in the arid and semiarid-semihumid transition zones is increasing in East Asia and North Africa. The BLH in the extreme arid region, the arid-semiarid transition region and the semiarid region is increasing in East Asia but decreasing in North Africa. Extreme arid regions contributed the least to the overall annual change of BLH in arid and semiarid regions, with 11.05% in East Asia and 3.68% in North Africa. In East Asia, semi-arid regions had the largest contribution of 23.74%, while in North Africa semiarid-semihumid transition zones have the largest contribution of 28.89%. The changes of BLH in both regions contain oscillations with periods of 60 a, 30 a, 10 a, 5~7 a and 2~4 a. In the long-term cyclical changes, the BLH of the two regions are basically in an anti-phase relationship, and in the short time scales, it is in the relationship between the anti-phase and the same phase alternates. In the long-term change of BLH, the BLH of each season in East Asia is increasing in 111 years, while the BLH in North Africa is increasing in winter and decreasing in the other three seasons. Among the interannual changes of BLH, summer dominates the interannual changes of BLH in the whole region, with East Asia contributing 58.50% to inter-annual changes and North Africa contributing 57.52% to inter-annual changes. And the annual change contribution rate of autumn in North Africa is more than twice that of East Asia.

参考文献

[1]Alexander L V, Zhang X, Peterson T C, et al, 2006. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 111(D5):1042-1063.
[2]Chan K M, Wood R, 2013. The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data[J]. Journal of Geophysical Research Atmospheres, 118(22):12422-12434.
[3]Dai A, Lamb P J, Trenberth K E, et al, 2004. The recent Sahel drought is real[J]. International Journal of Climatology, 24(11):1323-1331.
[4]ECMWF. IFS Documentation CY40R1. Operational implementation 22 November 2013, PART Ⅳ: PHYSICAL PROCESSES[R]. 2014, pp50.
[5]Esau I, Zilitinkevich S, 2010. On the role of the planetary boundary layer depth in the climate system[J]. Advances in Science and Research, 4(1):63-69.
[6]Garratt J R, 1992. The atmospheric boundary layer[M]. Combridge:Cambridge University Press, 316.
[7]Guo J, Miao Y, Zhang Y, et al, 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 16(20):13309-13319.
[8]Huang J, Guan X, Ji F, 2012. Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics, 12(12):5391-5398.
[9]Jones P D, Briffa K R, 1992. Global surface air temperature variations during the twentieth century:Part 1, spatial, temporal and seasonal details[J]. The Holocene, 2(2):165-179.
[10]Kumar M, Mallik C, Kumar A, et al, 2010. Evaluation of the boundary layer depth in semi-arid region of India[J]. Dynamics of Atmospheres and Oceans, 49(2):96-107.
[11]Lewis J R, Welton E J, Molod A M, et al, 2013. Improved boundary layer depth retrievals from MPLNET[J]. Journal of Geophysical Research:Atmospheres, 118(17):9870-9879.
[12]Liu S Y, Liang X Z, 2010. Observed diurnal cycle climatology of planetary boundary layer height.[J]. Journal of Climate, 23(21):5790-5809.
[13]Marsham J H, Parker D J, Grams C M, et al, 2008. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmospheric Chemistry and Physics, 8(23):6979-6993.
[14]Narisma G T, Foley J A, Licker R, et al, 2007. Abrupt changes in rainfall during the twentieth century[J]. Geophysical Research Letters, 34(6):L06710.
[15]Poli P, Hersbach H, Dee D P, et al, 2016. ERA-20C:An atmospheric reanalysis of the twentieth century[J]. Journal of Climate, 29(11):4083-4097.
[16]Satyanarayana A N V, Lykossov V N, Mohanty U C, 2000. A Study On Atmospheric Boundary-Layer Characteristics At Anand, India Using Lsp Experimental Data Sets[J]. Boundary-Layer Meteorology, 96(3):393-419.
[17]Sawyer V, Li Z, 2013. Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer[J]. Atmospheric Environment, 79(11):518-528.
[18]Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. Journal of Geophysical Research:Atmospheres, 115(D16113). DOI:10.1029/2009JD013680.
[19]Seidel D J, Zhang Y, Beljaars A, et al, 2012. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research:Atmospheres, 117(D17106). DOI:10.1029/2012JD018143.
[20]Takemi T, 1999. Structure and evolution of a severe squall line over the arid region in northwest China[J]. MonthlyWeather Review, 127(6):1301-1309.
[21]Von Engeln A, Teixeira J, 2013. A planetary boundary layer height climatology derived from ECMWF reanalysis data[J]. Journal of Climate, 26(17):6575-6590.
[22]Wang X, Wang K, 2016. Homogenized variability of radiosonde-derived atmospheric boundary layer height over the global land surface from 1973 to 2014[J]. Journal of Climate, 29(19):6893-6908.
[23]Wu Z, Huang N E, 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(01):1-41.
[24]Zhang Y H, Zhang S D, Huang C M, et al, 2014. Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China[J]. Science China Technological Sciences, 57(11):2172-2176.
[25]Zhang Y, Seidel D J, Zhang S, 2013. Trends in planetary boundary layer height over Europe[J]. Journal of Climate, 26(24):10071-10076.
[26]Zhao Y R, Mao W Q, Zhang K Q, et al, 2017. Climatic variations in the boundary layer height of arid and semiarid areas in East Asia and North Africa[J]. Journal of the Meteorological Society of Japan, 95(3):181-197.
[27]钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J].高原气象, 36(6):1433-1456. DOI:10.7522/j.issn.1000-0534.2017.00075.
[28]赵艳茹, 张珂铨, 毛文茜, 等, 2017a. 100年来东亚和北非干旱半干旱区边界层高度的变化特征研究[J].高原气象, 36(5):1304-1314. DOI:10.7522/j.issn.1000-0534.2016.00107.
[29]赵艳茹, 毛文茜, 张珂铨, 等, 2017b.东亚、北非干旱半干旱区边界层高度变化及其影响因素[J].中山大学学报(自然科学版), 56(5):93-100. DOI:10.13471/j.cnki.acta.snus.2017.05.013.
[30]赵艳茹, 2018.东亚干旱半干旱区边界层高度对干湿变化的影响研究[D].兰州: 兰州大学.
文章导航

/