Based on the observed daily precipitation data and NCEP/NCAR reanalysis data from 1960 to 2016, the relationship between atmospheric heat source in Qinghai-Tibetan Plateau and its surrounding area and rainstorm in Sichuan Basin in summer were discussed. The main conclusions are as follows:The key region with significant positive correlations between rainstorm in Sichuan Basin and atmospheric heat sources in Qinghai-Tibetan Plateau is located in the south-central and the southern side of the plateau, while the significant negative correlations region is located in the east-central and the eastern side of the plateau. And then the Thermal Contrast Index (Itc) of these two regions is proposed. The index can reflect the difference between eastern and western regions of the Sichuan Basin in summer rainstorm frequency. In the years of high thermal difference index, the position of subtropical high shifts westward and northward, and the water vapor transport in the Arabian Sea and the Bay of Bengal is significantly enhanced. Due to the blocking of the subtropical high, the water vapor accumulates in the western part of the basin and converges with the water vapor from the Southeast coast. At the same time, the trough or the low pressure on the west side of Lake Baikal is westward, and the path of the gathered cold air to the south is westward. Then the water vapor convergence in the western part of Sichuan Basin increased abnormally, and there were more rainstorms. In the eastern part of the basin, water vapor transport in the southwest side is blocked, and the water vapor diverged westward, so the water vapor content in the eastern part of Sichuan Basin is low and the rainstorm is obviously less. In the years of low thermal difference index, the location of the subtropical high is eastward, and the water vapor transport in the Arabia Sea and the bay of Bengal is significantly weaker. Water vapor transport in Sichuan Basin mainly comes from the Southeast coast and increases in the eastern part of Sichuan Basin, but it is difficult to reach the western part of the basin. At the same time, the multi-blocking situation in the south side of Baikal makes the path of the cold air to south is eastward, and the water vapor converges increase in the east of the basin, resulting in more rainstorms. At this time, the water vapor content in the west of the basin is on the low side and the rainstorm is on the low side.
[1]Duan A M, Wang M R, Lei Y H, et al, 2012a. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 26(1):261-275.
[2]Duan A M, Wu G X, Liu Y M, et al, 2012b. Weather and climate effects of the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 29(5):978-992.
[3]Lai X, Gong Y F, 2017. Relationship between atmospheric heat source over the Tibetan Plateau and precipitation in the Sichuan-Chongqing region during summer[J]. Journal of Meteorological Research, 31(3):555-566.
[4]Wu G, Liu Y, Zhang Q, et al, 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 8(4):770-789.
[5]Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. Journal of the Atmospheric Sciences, 30(4):611-627.
[6]Zhao P, Chen L X, 2001. Climatic features of atmospheric heat source/sink over Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China[J]. Science in China (Earth Sciences), 44(9):858-864.
[7]敖婷, 李跃清, 2015.夏季青藏高原及周边热力特征与东亚降水的区域关系[J].高原气象, 34(5):1204-1216. DOI:10.7522/j.issn.1000-0534.2014.00100.
[8]白莹莹, 张焱, 李强, 等, 2014.四川盆地夏季降水区域差异及其与季风的联系初探[J].气象, 40(4):440-449.
[9]贲海荣, 周顺武, 乔钰, 等, 2017.一个新的青藏高原热力指数的构建及其应用[J].高原气象, 36(6):1487-1498. DOI:10.7522/j.issn.1000-0534.2017.00009.
[10]陈活泼, 2013. CMIP5模式对21世纪末中国极端降水事件变化的预估[J].科学通报, 58(8):743-752.
[11]陈忠明, 闵文彬, 刘福明, 等, 2003.青藏高原地表热源异常与四川盆地夏季降水的关联[J].气象, 29(5):9-12.
[12]陈永仁, 李跃清, 王春国, 等, 2009.夏季南亚高压与川渝地区降水的关系研究[J].高原气象, 28(3):539-548.
[13]陈权亮, 倪长健, 万文龙, 2010.川渝盆地夏季旱涝变化特征及成因分析[J].高原气象, 29(3):587-594.
[14]陈丹, 周长艳, 熊光明, 等, 2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象, 37(1):197-206. DOI:10.7522/j.issn.1000-0534.2017.00022.
[15]段安民, 吴国雄, 2003.7月青藏高原大气热源空间型及其与东亚大气环流和降水的相关研究[J].气象学报, 61(4):447-456.
[16]邓国卫, 孙俊, 阮贵宾, 等, 2017.四川省暴雨洪涝灾情特征及主汛期环流背景分析[J].高原气象, 36(6):1521-1532. DOI:10.7522/j.issn.1000-0534.2016.00099.
[17]杜华明, 董廷旭, 2016.川东盆地高温、暴雨特征及对气候变化的响应[J].水土保持研究, 23(5):147-151.
[18]杜华明, 延军平, 2014.近51年川滇地区气候暖干化与旱涝灾害趋势判断[J].长江流域资源与环境, 23(5):714-721.
[19]华明, 2003.青藏高原热状况对夏季西南地区气候影响的分析及模拟[J].高原气象, 22(S1):152-156.
[20]黄小梅, 肖丁木, 焦敏, 等, 2014.近30年青藏高原大气热源气候特征研究[J].高原山地气象研究, 34(4):38-43.
[21]简茂球, 罗会邦, 乔云亭, 2004.青藏高原东部和西太平洋暖池地区大气热源与中国夏季降水的关系[J].热带气象学报, 20(4):355-364.
[22]刘新, 李伟平, 吴国雄, 2002.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报, 60(3):267-277.
[23]刘新, 李伟平, 许晃雄, 等, 2007.青藏高原加热对东亚地区夏季降水的影响[J].高原气象, 26(6):1288-1292.
[24]李永华, 卢楚翰, 徐海明, 等, 2011.夏季青藏高原大气热源与西南地区东部旱涝的关系[J].大气科学, 35(3):422-434.
[25]梁玲, 李跃清, 胡豪然, 等, 2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象, 32(6):1538-1545.
[26]龙妍妍, 范广洲, 李飞, 等, 2018.高原夏季风对中国夏季极端降水的影响研究[J].高原气象, 37(1):1-12. DOI:10.7522/j.issn.1000-0534.2017.00010.
[27]龙柯吉, 郭旭, 陈朝平, 等, 2015.四川省降水相态时空分布及变化特征[J].高原山地气象研究, 35(1):21-26.
[28]钱正安, 吴统文, 梁潇云, 2001.青藏高原及周边地区的平均垂直环流特征[J].大气科学, 25(4):444-454.
[29]齐冬梅, 李跃清, 李英, 等, 2010.夏季青藏高原东部大气热源变化及其对相邻区域气候的影响[J].干旱气象, 28(2):113-120.
[30]吴佳, 周波涛, 徐影, 2015.中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估[J].地球物理学报, 58(9):3048-3060.
[31]余莲, 封彩云, 李小兰, 等, 2015.近几十年青藏高原热源影响西南地区夏季降水的研究进展[J].高原山地气象研究, 35(4):91-95.
[32]周长艳, 李跃清, 彭俊, 2006.高原东侧川渝盆地降水与水资源特征及变化[J].大气科学, 30(6):1217-1226.
[33]周长艳, 李跃清, 房静, 等, 2008.高原东侧川渝盆地东西部夏季降水及其大尺度环流特征[J].高原山地气象研究, 28(2):1-9.
[34]赵旋, 李耀辉, 齐冬梅, 2013.1961-2007年四川夏季降水的时空变化特征[J].冰川冻土, 35(4):959-967.