论文

中国西北地区大气边界层高度变化特征——基于探空资料与ERA-Interim再分析资料

  • 赵采玲 ,
  • 李耀辉 ,
  • 柳媛普 ,
  • 周甘霖 ,
  • 张铁军 ,
  • 孙旭映
展开
  • 中国气象局兰州干旱气象研究所甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室, 西北区域数值预报中心, 甘肃 兰州 730000;中国科学院西北生态环境资源研究院, 中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000

收稿日期: 2018-06-29

  网络出版日期: 2019-12-28

基金资助

中国干旱气象科学研究计划项目(GYHY201506001);国家自然科学基金项目(91837209,41675015);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金项目(LPCC2016003)

The Variation Characteristics of Planetary Boundary Layer Height in Northwest China: Based on Radiosonde and ERA-Interim Reanalysis Data

  • ZHAO Cailing ,
  • LI Yaohui ,
  • LIU Yuanpu ,
  • ZHOU Ganlin ,
  • ZHANG Tiejun ,
  • SUN Xuying
Expand
  • Key Laboratory for Arid Climate Change and Disaster Reduction of Gansu Province, Lanzhou Institute of Arid Meteorology/Northwestern Regional Center of Numerical Weather Prediction, Key Open Laboratory for Arid Climate Change and Disaster Reduction of the China Meteorological Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2018-06-29

  Online published: 2019-12-28

摘要

利用中国西北地区2015年9月至2016年8月38个站点L波段探空观测、2016年7月加密探空观测和ERA-Interim边界层高度资料,对比分析了西北地区大气边界层高度变化特征。观测资料表明,在中国西北地区,08:00(北京时,下同)冬季边界层高度最高;20:00春季边界层高度最高,边界层高度从西部到东部有显著降低的趋势。ERA-Interim资料基本能表现出边界层高度的区域分布,但相对于探空观测得到的边界层高度,除夏季20:00外,ERA-Interim再分析资料边界层高度均偏低。全年平均而言,08:00(20:00)偏低160 m(170 m),其中在08:00(20:00),冬季(春季)偏低最显著。08:00边界层高度与低层稳定度、近地层温度和风速相关更加显著;20:00边界层高度与低层稳定度和相对湿度相关更加显著。2016年7月加密观测资料对比表明,ERA-Interim资料的对流(中性)边界层高度显著偏高;低层稳定度、相对湿度偏小,风速偏大可能是造成边界层高度偏高的原因;ERA-Interim资料的稳定边界层高度偏低,与低层稳定度和近地层温度偏低相关,但其影响因素相对更加复杂。

本文引用格式

赵采玲 , 李耀辉 , 柳媛普 , 周甘霖 , 张铁军 , 孙旭映 . 中国西北地区大气边界层高度变化特征——基于探空资料与ERA-Interim再分析资料[J]. 高原气象, 2019 , 38(6) : 1181 -1193 . DOI: 10.7522/j.issn.1000-0534.2018.00152

Abstract

The planetary boundary layer height (PBLH) are calculated by using the radiosonde sounding data of 38 L-band operational sites during September 2015 to August 2016 in Northwest China. The radiosonde sounding data of 6 intensive sounding sites are also used. The diurnal and seasonal variations of PBLH have been analyzed by using the radiosonde sounding data and ERA-Interim Daily data. The PBLH-OBS (PBLH derived from of sounding data) shows that in Northwest China, the PBLH-OBS is highest in winter at 08:00 (Beijing time, the same as after). And the PBLH-OBS is highest in spring at 20:00 and decreased significantly from west to east. Compared to the PBLH-OBS, the PBLH-ERA (PBLH of ERA-Interim Daily data) are all lower except the PBLH of 20:00 in summer. The annual PBLH are lower 160 m (170 m) at 08:00 (20:00). The PBLH-ERA of 08:00 (20:00) is lower significantly in winter (summer). PBLH-ERA can basically show the regional distribution of PBLH in Northwest China. The correlation between the PBLH and the lower tropospheric stability (LST), the near surface temperature (Ts) and the 10 m wind speed (WS) is more significant at 08:00. And the PBLH is more related to LST and relative humidity (RH) at 20:00. The intensive sounding data shows that the PBLH-ERA of convective/neutral boundary layer is significantly higher in July 2016. The lower LST, RH and higher WS may be the cause of the higher PBLH-ERA. The stable boundary layer height of PBLH is lower, which is related to lower LST and Ts, but the influencing factors are more complex.

参考文献

[1]Davies F, Middleton D R, Bozier K E, 2007. Urban air pollution modelling and measurements of boundary layer height[J]. Atmospheric Environment, 41(19):4040-4049. DOI:10.1016/j.atmosenv. 2007.01.015.
[2]Guo J, Miao Y, Zhang Y, et al, 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 16(20):13309-13319. DOI:10.5194/acp-2016-564.
[3]Klink K, 1999. Trends in mean monthly maximum and minimum surface wind speeds in the co-terminous United States[J]. Climate Research, 13(3):193-205.
[4]Liu J, Huang J, Chen B, et al, 2015. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 153:102-112. DOI:10.1016/j.jqsrt. 2014.10.011.
[5]Liu S Y, Liang X Z, 2009. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 23(21):5790-5809. DOI:10.1175/2010JCLI3552.1.
[6]Martilli A, 2002. Numerical study of urban impact on boundary layer structure:Sensitivity to wind speed, urban norphology, and rural soil moisture[J]. Journal of Applied Meteorology, 41(12):1247-1266. DOI:10.1175/1520-0450(2002)041 < 1247:NSOUIO>2.0. CO; 2.
[7]Medeiros B, Hall A, Stevens B, 2005.What controls the mean depth of the PBL?[J]. Journal of Climate, 18(16):3157-3172. DOI:10.1175/JCLI3417.1.
[8]Quan J, Gao Y, Zhang Q, et al, 2012. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 11(1):34-40. DOI:10.1016/j.partic. 2012.04.005.
[9]Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. Journal of Geophysical Research, 115:D16133. DOI:10.1029/2009JD013680.
[10]Seidel D J, Zhang Y, Beljaars A, et al, 2012. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research, 117:D17106. DOI:10.1029/2012JD018143.
[11]Stull R B, 1988. An introduction to boundary layer meteorology[M]. Dordrecht:Kluwer Academic Publishers, 2.
[12]Yang T, Wang Z, Zhang W, et al, 2017. Technical note:Boundary layer height determination from lidar for improving air pollution episode modeling:Development of new algorithm and evaluation[J]. Atmospheric Chemistry and Physics, 17(10):1-15. DOI:10.5194/acp-17-6215-2017.
[13]Zhang Y H, Zhang S D, Huang C M, et al, 2014. Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China[J]. Science China Technological Sciences, 57(11):2172-2176. DOI:10.1007/s11431-014-5639-5.
[14]Zhao Y, Mao W, Zhang K, et al, 2017. Climatic variations in the boundary layer height of arid and semiarid areas in East Asia and North Africa[J]. Journal of the Meteorological Society of Japan, 95(3):181-197. DOI:10.2151/jmsj. 2017-010.
[15]程海艳, 余晔, 陈晋北, 等, 2018.大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J].高原气象, 37(2):432-442. DOI:10.7522/j.issn.1000-0534.2017.00094.
[16]杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1):148-157. DOI:10.7522/j.issn.1000-0534.2017.00042.
[17]黄刚, 2006. NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化[J].气候与环境研究, 11(3):310-320.
[18]惠小英, 高晓清, 韦志刚, 等, 2011.利用探空气球升速判定敦煌夏季白天边界层高度的分析[J].高原气象, 30(3):614-619.
[19]刘超, 花丛, 张恒德, 等, 2017. L波段探空雷达秒数据在污染天气边界层分析中的应用[J].气象, 43(5):591-597.
[20]刘菊菊, 游庆龙, 周毓荃, 等, 2018.基于ERA-Interim的中国云水量时空分布和变化趋势[J].高原气象, 37(6):1590-1604. DOI:10.7522/j.issn.1000-0534.2018.00059.
[21]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6):1470-1485. DOI:10.7522/j.issn.1000-0534.2018.00040.
[22]宋星灼, 张宏升, 刘新建, 等, 2006.青藏高原中部地区不稳定大气边界层高度的确定与分析[J].北京大学学报(自然科学版), 42(3):328-333.
[23]万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1):173-182. DOI:10.7522/j.issn.1000-0534.2016.00001.
[24]王坚, 蔡旭晖, 宋宇, 2016.北京地区日最大边界层高度的气候统计特征[J].气候与环境研究, 21(5):525-532. DOI:10.3878/j.issn.1006-9585.2016.15178.
[25]王英, 熊安元, 2015. L波段探空仪器换型对高空湿度资料的影响[J].应用气象学报, 26(1):76-86.
[26]韦志刚, 陈文, 黄荣辉, 2010.敦煌夏末大气垂直结构和边界层高度特征[J].大气科学, 34(5):905-913.
[27]张强, 黄荣辉, 王胜, 2011.浅论西北干旱区陆面过程和大气边界层对区域天气气候的特殊作用[J].干旱气象, 29(1):133-136.
[28]张强, 王胜, 2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报, 66(4):599-608.
文章导航

/