论文

基于TRMM PR和VIRS探测的青藏高原夏季横切变线云降水个例分析

  • 孙礼璐 ,
  • 王瑞 ,
  • 谭瑞婷 ,
  • 姚秀萍 ,
  • 傅云飞
展开
  • 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026;中国气象局气象干部培训学院, 北京 100081

收稿日期: 2018-09-03

  网络出版日期: 2019-12-28

基金资助

国家自然科学基金项目(91837310);公益性行业(气象)科研专项(GYHY201406001)

Analysis on Precipitation and Cloud of Transverse Shear Line Cases in Summer over Qinghai-Tibetan Plateau based on TRMM PR and VIRS Detection

  • SUN Lilu ,
  • WANG Rui ,
  • TAN Ruiting ,
  • YAO Xiuping ,
  • FU Yunfei
Expand
  • School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China;China Meteorological Administration Training Center, Beijing 100081, China

Received date: 2018-09-03

  Online published: 2019-12-28

摘要

利用热带测雨卫星(TRMM)搭载的测雨雷达(PR)和可见光/红外扫描仪(VIRS)探测结果的融合数据,结合ECMWF再分析资料,分析了1998年6月22日(轨道号:03257)和2011年7月3日(轨道号:77642)两个夏季青藏高原横切变线个例的云降水特征。结果表明,高原横切变线降水回波顶高度多分布于4~10 km,局部可达12 km,其降水强度85%以上为0.5~2.5 mm·h-1,仅局部达20 mm·h-1以上。云粒子尺度(云粒子有效半径)分布较为均匀,多数尺度分布在10~30 μm之间,尺度峰值均为16 μm,局部尺度可达30 μm以上,液态水路径的峰值均在1.50 kg·m-2左右。降水回波顶高度最高可达17 km,近地面降水回波强度最大可达50 dBZ,降水回波主要出现在6~10 km高度,其强度大体在17~25 dBZ。横切变线降水中浅薄降水、深厚弱对流降水、深厚强对流降水的垂直结构差异明显,并相应产生不同的近地面降水强度。

本文引用格式

孙礼璐 , 王瑞 , 谭瑞婷 , 姚秀萍 , 傅云飞 . 基于TRMM PR和VIRS探测的青藏高原夏季横切变线云降水个例分析[J]. 高原气象, 2019 , 38(6) : 1194 -1207 . DOI: 10.7522/j.issn.1000-0534.2018.00160

Abstract

The characteristics of precipitation and cloud of two transverse shear line cases in the Qinghai-Tibetan Plateau on June 22, 1998 (orbit number:03257) and July 3, 2011 (orbit number:77642) were investigated based on combining measurements of the tropical rainfall measuring mission (TRMM) precipitation radar (PR) and visible and infrared scanner (VIRS) together with European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis data. Results indicate that storm top height in the region near the transverse shear line over the Qinghai-Tibetan Plateau varies from 4 km to 10 km and only in some region the storm top height reaches about 12 km. Approximately 85% rain rate near the transverse shear line region over Qinghai-Tibetan Plateau varies from 0.5 mm·h-1 to 2.5 mm·h-1 and greater than 20 mm·h-1 only in small scale area. It is apparent that the area is mostly sprinkle. The spectral distributions of effective particle radius (Re) and liquid water path (LWP) are different. The distribution of cloud particle dimension, namely the effective particle radius of cloud particle is evenly distributed, mostly varies in 10~30 μm and the maximum of effective particle radius is 16 μm. And the sizes of cloud particle is 5 μm smaller than that in oceanic cloud system in a general way. It is noticed that the effective particle radius of cloud particle may up to 30 μm in some region. For the LWP (liquid water path), the maximum is 1.5 kg·m-2. And according to the previous work, it is known that the LWP is 0.3 kg·m-2 less than that in frontal precipitation cloud system in eastern China. The storm top height can reaches about 17 km and the maximum echo of near surface rain rate is 50 dBZ, the precipitation echo mainly exist in 6~10 km and 17~25 dBZ. The differences in precipitation vertical structure between shallow precipitation, deep weak convective precipitation and deep strong convective precipitation are evident in the transverse shear line region over Qinghai-Tibetan Plateau and show different near surface rain rate. There also some differences exist in precipitation vertical structure of precipitation cloud with different phases near the cloud top, but the differences in near surface rain rate are not evident.

参考文献

[1]Chen F J, Fu Y F, Liu P, et al, 2016. Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR[J]. Atmospheric Research, 169:113-126.
[2]Chen Y L, Fu Y F, Xian T, et al, 2017. Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat[J]. International Journal of Climatology, 37:4043-4052. DOI:10.1002/joc.4992.
[3]Fu Y F, Liu G S, Wu G X, et al, 2006. Tower mast of precipitation over the central Tibetan Plateau summer[J]. Geophysical Research Letters, 33, L05082. DOI:10.1029/2005GL024713.
[4]Fu Y F, 2014. Cloud parameters retrieved by the bispectral reflectance algorithm and associated applications[J]. Journal of Meteorological Research, 28(5):965-982. DOI:10.1007/s13351-014-3292-3.
[5]Fu Y F, Liu G S, 2007. Possible misidentification of rain type by TRMM PR over Tibetan Plateau[J]. Journal of Applied Meteorology and Climatology, 46(5):667-672.
[6]Fu Y F, Pan X, Xian T, et al, 2017. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS[J]. Climate Dynamics, 51:1971-1989. DOI:10.1007/s00382-017-3992-3.
[7]Liu Q, Fu Y F, Yu R C, et al, 2008. A new satellite-based census of precipitating and nonprecipitating clouds over the tropics and subtropics[J]. Geophysical Research Letters, 35:L07816. DOI:10.1029/2008GL033208.
[8]Yu S H, Gao W L, Xiao D X, et al, 2016. Observational facts regarding the joint activities of the southwest vortex and plateau vortex after its department from the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 33(1):34-46. DOI:10.1007/s00376-015-5039-1.
[9]Yuter S E, Houze R A, 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus, Part III:Vertical mass transport, mass divergence, and synthesis[J]. Monthly Weather Review, 123:1964-1983. DOI:10.1175/1520-0493(1995)123 < 1941:TDKAME>2.0. CO; 2.
[10]Zhang X, Yao X P, Ma J L, et al, 2016. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer[J]. Journal of Meteorological Research, 30(6):915-926. DOI:10.1007/s13351-016-6952-7.
[11]Zhao Y C, 2015. A study on the heavy-rain-producing mesoscale convective system associated with diurnal variation of radiation and topography in the eastern slope of the western Sichuan plateau[J]. Meteorology and Atmospheric Physics, 127:123-146. DOI:10.1007/s00703-014-0356-y.
[12]傅云飞, 冯静夷, 朱红芳, 等, 2005.西太平洋副热带高压下热对流降水结构特征的个例分析[J].气象学报, 63(5):750-761.
[13]傅云飞, 李宏图, 自勇, 2007. TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象, 26(1):98-106.
[14]傅云飞, 刘鹏, 刘奇, 等, 2011.夏季热带及副热带降水云可见光红外信号统计特点分析[J].大气与环境光学学报, 6(2):129-140.
[15]傅云飞, 潘晓, 刘国胜, 等, 2016.基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究[J].大气科学, 40(1):102-120. DOI:10.3878/j.issn.1006-9895.1507.15165.
[16]傅云飞, 宇如聪, 崔春光, 等, 2007.基于热带测雨卫星探测的东亚降水云结构特征的研究[J].暴雨灾害, 26(1):9-20.
[17]何光碧, 2013.高原切变线回顾[J].高原山地气象研究, 33(1):90-96. DOI:10.3969/j.issn.1674-2184.2013.01.016.
[18]何光碧, 高文良, 屠妮妮, 2009.2000-2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象, 28(3):549-555.
[19]矫梅燕, 李川, 李延香, 2005.一次川东大暴雨过程的中尺度分析[J].应用气象学报, 16(5):699-704.
[20]李国平, 赵福虎, 黄楚惠, 等, 2014.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 38(4):756-769. DOI:10.3878/j.issn.1006-9895.2013.13235.
[21]李山山, 李国平, 2017.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象, 36(2):317-329. DOI:10.7522/j.issn.1000-0534.2016.00025.
[22]李维京, 罗四维, 1986.青藏高原对其邻近地区一次天气系统影响的数值试验[J].高原气象, 5(3):245-255.
[23]林志强, 2015.1979-2013年ERA-Interim资料的青藏高原低涡活动特征分析[J].气象学报, 73(5):925-939. DOI:10.11676/qxxb2015.066.
[24]刘富民, 潘平山, 1987.青藏高原横切变线南移的研究[J].高原气象, 6(1):56-64.
[25]刘奇, 傅云飞, 刘国胜, 2007.夏季青藏高原与东亚及热带的降水廓线差异分析[J].中国科学技术大学学报, 37(8):885-894.
[26]卢鹤立, 邵全琴, 刘纪远, 等, 2007.近44年来青藏高原夏季降水的时空分布特征[J].地理学报, 62(9):946-958.
[27]罗雄, 李国平, 2018.一次高原切变线过程的数值模拟与阶段性结构特征[J].高原气象, 37(2):406-419. DOI:10.7522/j.issn.1000-0534.2017.00046.
[28]马嘉里, 姚秀萍, 2015.1981-2013年6-7月江淮地区切变线及暴雨统计分析[J].气象学报, 73(5):883-894. DOI:10.11676/qxxb2015.065.
[29]潘晓, 傅云飞, 2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].高原气象, 34(5):1191-1203. DOI:10.7522/j.issn.10000-0534.2014.00112.
[30]乔全明, 谭海清, 1984.夏季青藏高原500毫巴切变线的结构与大尺度环流[J].高原气象, 3(3):50-57.
[31]孙兴池, 王西磊, 周雪松, 2012.纬向切变线暴雨落区的精细化分析[J].气象, 38(7):779-785.
[32]唐洪, 2002.西藏高原夏季强降水过程分析[J].西藏科技, 9:51-55.
[33]陶诗言, 罗四维, 张鸿村, 1984.1979年5-8月青藏高原气象科学实验及其观测系统[J].气象, 10(7):2-5.
[34]徐国昌, 1984.500毫巴高原切变线的天气气候特征[J].高原气象, 3(1):36-41.
[35]许习华, 1987.影响准东西向切变线运动的一些因子分析[J].成都气象学院学报, 2:80-87.
[36]杨克明, 毕宝贵, 李月安, 等, 2001.1998年长江上游致洪暴雨的分析研究[J].气象, 27(8):9-14.
[37]姚秀萍, 孙建元, 康岚, 等, 2014.高原切变线研究的若干进展[J].高原气象, 33(1):294-300. DOI:10.7522/j.issn.1000-0534.2013.00164.
[38]叶笃正, 高由禧, 陈乾, 1977.青藏高原及其紧邻地区夏季环流的若干特征[J].大气科学, (1) 4:289-299.
[39]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2):108-121.
[40]郁淑华, 2000.长江上游暴雨对1998年长江洪峰影响的分析[J].气象, 26(1):56-57.
[41]郁淑华, 何光碧, 滕家谟, 1997.青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验[J].高原气象, 16(3):306-311.
[42]赵大军, 姚秀萍, 2018.高原切变线形态演变过程中的个例研究:结构特征[J].高原气象, 37(2):420-431. DOI:10.7522/j.issn.1000-0534.2017.00066.
文章导航

/