Based on one kilometer resolution short-term forecast model in Southern China, we adopt the Nudging method to assimilate wind and water substances from radar retrieve. Two typical rainfall cases of pre-flood season in Southern China are conducted in order to study different influence on precipitation forecast of short-term forecast model after improving wind and water substances at initial moment. The results show that the retrieve method is reasonable basically. And then Nudging radar retrieve results to forecast model and compare with control test (Test-ctl). The results show that:(1)The test of only Nudging water substances (Test-qcqr) can improve precipitation forecast during 0~7 h, especially for making rainfall which is less than normal data at 0~2 h better. (2)The test of only Nudging wind (Test-uv) makes better on 3~7 h forecast, but the improvement rate is generally small. (3)The test of both Nudging radar retrieve wind and water substances (Test-qcqr-uv) is best. It has significant improvement on 0~10 h precipitation forecast. From the vertical distribution of micro-physical point, we obtain that the main source of precipitation in the early stage is from water substances, so both test-qcqr and test-qcqr-uv are better obviously for pre-rainfall forecast. Nudging radar retrieve wind can quickly regulate bias of convergence lines at the lower level, but it must be with water substances. In general, Nudging water substances is most significant on short-term forecast, while Nudging radar retrieve wind can make better improvement on precipitation forecast after 3 hours on the base of the former.
[1]Brewster K, 1996. Application of a Bratserth analysis scheme inclding Doppler radar data[C]//15th Conference on Weather Analysis and Forecasting. American Meteorological Society, Norfolk, VA, 92-95.
[2]Crook N A, Sun J, 2002. Assimilating radar surface and profiler data for the Sydney 2000 forecast demonstration project[J]. Journal of Atmospheric Oceanic Technology, 19:888-898.
[3]Gao J D, Xue M, Brewster K, et al, 2004. A three-dimensional variational data analysis method with recursive filter for Doppler radars[J]. Journal of Atmospheric Oceanic Technology, 21:457-469.
[4]Qiu C J, Shao A M, Liu S, et al, 2006. A two step variational method for three dimensional wind retrieval from single Doppler radar[J]. Meteorogy Atmospheric Physics, 91:1-8.
[5]Sun J, Crook N A, 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅰ:Model development and simulated data experiments[J]. Journal of Atmospheric Sciences, 54:1642-1661.
[6]Sun J, Flicker D W, Lilly D K, 1991. Recovery of three-dimensional wind and temperature fields from single-Doppler radar data[J]. Journal of Atmospheric Sciences, 48:876-890.
[7]Sun J, Chen M, Wang Y, 2010. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project[J]. Weather and Forecasting, 25:1715-1735.
[8]Weygandt S S, Benjamin S G, Smirnova T G, et al, 2008. Assimilation of radar reflectivity data using a diabatic digital filter within the Rapid Update Cycle[C]//Preprint, 12th Conf. on IOAS-AOLS, New Orleans, LA, American Meteorological Society.
[9]陈葆德, 王晓峰, 李泓, 等, 2013.快速更新同化预报的关键技术综述[J].气象科技进展, 3(2):29-35.
[10]陈敏, 陈明轩, 范水勇, 2014.雷达径向风观测在华北区域数值预报系统中的实时三维变分同化应用试验[J].气象学报, 72(4):658-677.
[11]陈明轩, 高峰, 孔荣, 等, 2010.自动临近预报系统及其在北京奥运期间的应用[J].应用气象学报, 21(4):395-404.
[12]陈明轩, 王迎春, 高峰, 等, 2011.基于雷达资料4DVar的低层热动力反演系统及其在北京奥运期间的初步应用分析[J].气象学报, 69(1):64-78.
[13]陈明轩, 俞小鼎, 谭晓光, 等, 2004.对流天气临近预报技术的发展与研究进展[J].应用气象学报, 15(6):754-766.
[14]陈子通, 黄燕燕, 万齐林, 等, 2010.快速更新循环同化预报系统的汛期试验与分析[J].热带气象学报, 26(1):49-54.
[15]范水勇, 王洪利, 陈敏, 等, 2013.雷达反射率资料的三维变分同化研究[J].气象学报, 71(3):527-537.
[16]顾建峰, 2006.多普勒雷达资料三维变分直接同化方法研究[D].南京: 南京信息工程大学.
[17]刘红亚, 徐海明, 胡志晋, 等, 2007a.雷达反射率因子在中尺度云分辨模式初始化中的应用Ⅰ:云微物理量和垂直速度的反演[J].气象学报, 65(6):896-905.
[18]刘红亚, 徐海明, 薛纪善, 等, 2007b.雷达反射率因子在中尺度云分辨模式初始化中的应用Ⅱ:数值模拟试验[J].气象学报, 65(6):906-918.
[19]盛春岩, 蒲一芬, 高守亭, 2006a.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学, 30(1):93-107.
[20]盛春岩, 薛德强, 雷霆, 等, 2006b.雷达资料同化与提高模式水平分辨率对短时预报影响的数值对比试验[J].气象学报, 64(3):293-307.
[21]孙娟珍, 陈明轩, 范水勇, 2016.雷达资料同化方法:回顾与前瞻[J].气象科技进展, 6(3):17-27.
[22]王洪, 王东海, 万齐林, 2015.多普勒雷达资料同化在"7.21"北京特大暴雨个例中的应用[J].气象学报, 73(4):679-696.
[23]王晓峰, 王平, 张蕾, 等, 2017.多源观测在快速更新同化系统中的敏感性试验[J].高原气象, 36(1):148-161. DOI:10.7522/j.issn.1000-0534.2016.00018.
[24]王艳春, 王红艳, 刘黎平, 2016.三维变分方法反演风场的效果检验[J].高原气象, 35(4):1087-1101. DOI:10.7522/j.issn.1000-0534.2015.00022.
[25]王越亚, 邵爱梅, 2016. SVD-En3DVar同化方法在一次飑线过程中的应用[J].高原气象, 35(3):755-766. DOI:10.7522/j.issn.1000-0534.2015.00109.
[26]徐道生, 张艳霞, 张诚忠, 等, 2016.华南区域高分辨率模式中不同雷达回波反演技术方案的比较试验[J].热带气象学报, 32(1):9-18.
[27]杨波, 郑永光, 蓝渝, 等, 2017.国家级强对流天气综合业务支撑体系建设[J].气象, 43(7):845-855.
[28]杨毅, 邱崇践, 2006.利用多普勒雷达资料分析一次强降水的中尺度流场[J].高原气象, 25(5):925-931.
[29]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3):311-337.
[30]朱立娟, 2012. GRAPES短临预报的云初始场形成与雷达VAD质控的关键技术研究[D].北京: 中国气象科学研究院.