由于不同区域蒸散发对气候变化的敏感性各不相同,为摸清多年冻土活动层陆面过程中冻土-气候变化-水文循环之间的相互关系,选择青藏高原风火山区域的典型多年冻土区,依据气象站观测资料,应用Penman-Monteith公式计算了典型多年冻土区土壤蒸散发和蒸散发气候敏感系数,分析了多年冻土区土壤蒸散发对气候变化的敏感性。结果表明:多年冻土区土壤蒸散量对相对湿度的敏感性最高(-1.291),其次为风速(0.658),对空气温度的敏感性最低(0.248);土壤完全融化的植被生长期,蒸散发对各气象因子的敏感性最高,土壤完全冻结的植被枯萎期,蒸散发对各气象因子的敏感性都最低;年内尺度,蒸散发对气温、相对湿度和风速的敏感性均在8月最高,在1月或12月最低;蒸散发对气温和相对湿度的敏感性变化与植物生长变化过程高度一致,而蒸散发对风速的敏感性则较为复杂,与土壤的冻融过程相关,分别在土壤逐渐融化的植物生长前期和土壤完全融化的植物生长期敏感性较高。
The sensitivity of evapotranspiration to climate change, which varies in different regions, may lay a foundation for understanding the relationship between permafrost, climate change and hydrological cycle during permafrost activity. This paper calculated the soil evapotranspiration amount and its climatic sensitivity coefficient by Penman-Monteith equation based on the observation data of meteorological stations and analyzed the soil evapotranspiration in typical permafrost regions of the Qinghai-Tibetan Plateau. The results show that soil evapotranspiration is most sensitive to relative humidity (-1.291), followed by wind speed (0.658), and lowest was air temperature (0.248). The sensitivity of soil evapotranspiration to climate was highest in vegetation growth period while lowest in vegetation withering period. The sensitivity of soil evapotranspiration to climate change reached the highest value in August and the lowest value in January or December. The sensitivity of soil evapotranspiration to air temperature and relative humidity varied with the change in vegetation growth. But the change in the sensitivity of soil evapotranspiration to wind velocity was complex and related with transformation in soil freezes and melts.
[1]Gong L B, Xu C Y, Chen D L, et al, 2006. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang basin[J]. Journal of Hydrology, 329:620-629.
[2]Hupet F, Vanclooster M, 2001. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration[J]. Journal of Hydrology, 243:192-204.
[3]Li X, Wang L, Chen D, et al, 2014. Seasonal evapotranspiration changes (1983-2006) of four large basins on the Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 119(23):13079-13095. DOI:10.1002/2014JD022380.
[4]Li Y S, Wang G X, Qin D H, et al, 2008. Study on the runoff and sediment-producing effects of precipitation in headwater areas of the Yangtze River and Yellow River, China[J]. Environmental Geology, 56(1):1-9.
[5]Ming-Ko W, Xiu J G, 2006. Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic[J]. Permafrost and Periglacial Processes, 17(4):309-323.
[6]Qiu G Y, Yano T, Momii K, 1998. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface[J]. Journal of Hydrology, 210(1/4):93-105.
[7]Zhang Y S, Kadota T, Ohata1 T, et al, 2007. Environmental controls on evapotranspiration from sparse grassland in Mongolia[J]. Hydrological Processes, 21(15):2016-2027.
[8]成龙, 贾晓红, 吴波, 等, 2019.高寒沙区生物土壤结皮覆盖区凝结水组分分析[J].高原气象, 38(2):439-447. DOI:10.7522/j.issn.1000-0534.2018.00089.
[9]范晓梅, 刘光生, 王根绪, 等, 2009.长江源区高寒草甸蒸散发过程及影响因子[J].兰州大学学报(自然科学版), 45(5):138-140.
[10]焦丹丹, 吉喜斌, 金博文, 等, 2018.干旱气候条件下多种潜在蒸发量估算方法对比研究[J].高原气象, 37(4):1002-1016. DOI:10.7522/j.issn.1000-0534.2018.00048.
[11]李斌, 李丽娟, 覃驭楚, 等, 2011.澜沧江流域潜在蒸散发敏感性分析[J].资源科学, 33(7):1256-1263.
[12]李元寿, 王根绪, 赵林, 等, 2010.青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应[J].冰川冻土, 32(1):869-875.
[13]李婧梅, 蔡海, 程茜, 等, 2012.青海省三江源地区退化草地蒸散特征[J].草业科学, 21(3):223-233.
[14]梁丽乔, 李丽娟, 张丽, 等, 2008.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报, 24(5):1-5.
[15]刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J].高原气象, 37(5):1177-1187. DOI:10.7522/j.issn.1000-0534.2018.00016.
[16]刘小莽, 郑红星, 刘昌明, 等, 2009.海河流域潜在蒸散发的气候敏感性分析[J].资源科学, 31(9):1470-1476.
[17]聂青雷, 2013.高寒山区融雪径流对气候变化的敏感性分析[J].水资源与水工程学报, 24(6):214-219.
[18]谢欣汝, 游庆龙, 林厚博, 2018.近10年青藏高原中东部地表相对湿度减少成因分析[J].高原气象, 37(3):642-650. DOI:10.7522/j.issn.1000-0534.2017.00091.
[19]徐祥德, 赵天良, Lu C G, 等, 2014.青藏高原大气水分循环特征[J].气象学报, 72(6):1069-1095.
[20]杨林山, 李常斌, 王帅兵, 等, 2014.洮河流域潜在蒸散发的气候敏感性分析[J].农业工程学报, 30(11):102-108.
[21]杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象, 37(1):43-53. DOI:10.7522/j.issn.1000-0534.2017.00043.
[22]王根绪, 李元寿, 王一博, 等, 2007.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土, 29(2):159-168.
[23]吴浩, 侯威, 钱忠华, 等, 2012.基于气候变化综合指数的中国近50年来气候变化敏感性研究[J].物理学报, 61(4):149-205.
[24]袁烽迪, 张溪, 魏永强, 2018.青藏高原区生态屏障区生态环境脆弱性评价研究[J].地理空间信息, 16(14):67-69.
[25]张人禾, 2006.气候观测系统及其相关的关键问题[J].应用气象学报, 17(6):705-710.
[26]张志山, 李新荣, 赵洋, 等, 2018.沙坡头生态水文学研究进展及水量平衡自动模拟监测系统[J].中国沙漠, 38(6):1119-1135.