论文

基于地形差异的闪电频数与雷达回波关系分析

  • 孙玉婷 ,
  • 赖安伟 ,
  • 王明欢 ,
  • 王志斌 ,
  • 朱传林 ,
  • 孙京
展开
  • 中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 湖北 武汉 430205;湖北省公众气象服务中心, 湖北 武汉 430074;湖北省防雷中心, 湖北 武汉 430074

收稿日期: 2018-01-09

  网络出版日期: 2019-12-28

基金资助

国家重点研发计划项目(2018YFC1507200);政府间国际科技创新合作重点专项(2016YFE0109400);湖北省气象局科技发展基金项目(2016S01,2016S03,2018Z05)

Analysis of the Relationship between Lightning Flashes and Radar Echo based on Terrain Difference

  • SUN Yuting ,
  • LAI Anwei ,
  • WANG Minghuan ,
  • WANG Zhibin ,
  • ZHU Chuanlin ,
  • SUN Jing
Expand
  • Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, Hubei, China;Hubei Public Meteorological Service Center, Wuhan 430074, Hubei, China;Hubei Provincial Lightning Protection Center, Wuhan 430074, Hubei, China

Received date: 2018-01-09

  Online published: 2019-12-28

摘要

利用2014-2018年SWAN雷达三维拼图产品和闪电定位资料,分析华中地区闪电活动与雷达回波特征的关系,并建立山区和平原区的闪电代理回波(lightning proxy reflectivity)拟合公式。结果表明,闪电频数和面积与40~45 dBZ、45~50 dBZ强回波面积和最大回波强度均有显著的相关性,而与≥ 50 dBZ回波面积的相关性不大。在山区与平原区两种地形条件下,闪电频数与垂直柱最大雷达回波存在较好的S形曲线拟合关系。13 km网格分辨率下平原区的S形拟合曲线明显高于山区的拟合曲线,两者均高于美国同化系统GSI中原线性、非线性经验曲线,增长率与GSI的线性曲线接近。3 km的S形曲线平原区略高于山区。采用S形曲线拟合关系和GSI经验关系估计雷达回波,经检验,S曲线闪电代理回波与闪电高频区、实测强回波区一致,其中13 km网格的代理回波比GSI经验关系转换的回波强度大,且比其更接近观测值,但不如3 km网格代理回波拟合效果准确。若不考虑地形差异,闪电代理回波将出现高估或低估现象。

本文引用格式

孙玉婷 , 赖安伟 , 王明欢 , 王志斌 , 朱传林 , 孙京 . 基于地形差异的闪电频数与雷达回波关系分析[J]. 高原气象, 2019 , 38(6) : 1320 -1331 . DOI: 10.7522/j.issn.1000-0534.2018.00146

Abstract

By utilizing the Severe Weather Automatic Nowcast System (SWAN) 3D mosaic products and lightning locating data from 2014 to 2018, the relationship between lightning activity and radar echo characteristics in Central China is investigated and their functional fits under two different terrains of plains and mountains are established for calculating lightning-proxy reflectivity. It was found that the frequency and area of lightning have strong linear correlations with the areas of 40~45 dBZ and 45~50 dBZ reflectivity and the maximum reflectivity, and little correlations with the areas of 50~55 dBZ reflectivity. Under the two terrain conditions of mountain and plain, the fitted S-shape curve of column maximum reflectivity as a function of lightning ground stroke densities are effective. On 13 km grid, a S-shape curve in plain areas is distinctly above that in mountain areas. The fitting values of the two curves are larger than those of the preliminary linear and non-linear relationships within the cloud analysis of the Grid point Statistical Interpolation (GSI) analysis package (developed by NCEP), whereas the growth rates of the two S-shape curves are close to that of linear relationship in the GSI cloud analysis system. On 3 km grid, the S-shape curve in the plain slightly exceeds that in the mountain. By using S-shape curve fitting formulas and the GSI empirical formulas to estimate radar echo, the lightning-proxy reflectivity derived by S-shape curve fitting is very corresponding to the high frequency region of lightning flashes and the strong radar echo field. And the new proxy reflectivity intensity on 13 km grid, which is less accurate than that on 3-km grid, is larger than the reflectivity derived via the preliminary empirical formulas within the GSI and is closer to the observed radar reflectivity value. If the difference of the terrains is not considered, the radar reflectivity values are often underestimated in plain areas and overestimated in mountain areas.

参考文献

[1]Hu M, Weygandt S, Benjamin S, et al, 2008. Ongoing development and testing of generalized cloud analysis package within GSI for initializing rapid refresh[C]//13th Conference on Aviation, Range, and Aerospace Meteorology, New Orleans, LA.
[2]Papadopoulos A, Serpetzoglou E, Anagnostou E N, et al, 2009. Evaluating the impact of lightning data assimilation on mesoscale model simulations of a flash flood inducing storm[J]. Atmospheric Research, 94(4):715-725. DOI:10.1016/j.atmosres. 2009.05.008.
[3]Pessi A T, Businger S, 2009. The Impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean[J]. Monthly Weather Review, 137(10):3177-3195. DOI:10.1175/2009MWR2765.1.
[4]Wang Y, Yang Y, Liu D, et al, 2017. A case study of assimilating lightning-proxy relative humidity with WRF-3DVAR[J]. Atmosphere, 8(3):20. DOI:10.3390/atmos8030055.
[5]Wang Y, Yang Y, Wang C, 2014. Improving forecasting of strong convection by assimilating cloud-to-ground lightning data using the physical initialization method[J]. Atmospheric Research, 150(1):31-41. DOI:10.1016/j.atmosres. 2014.06.017.
[6]Weygandt S S, Hu M, Benjamin S G, et al, 2008. Assimilation of lightning data using a diabatic digital filter within the Rapid Update Cycle[C]//In Proceedings of the 12th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA: 201-211.
[7]Yang Y, Wang Y, Zhu K, 2015. Assimilation of Chinese doppler radar and lightning data using WRF-GSI:A case study of mesoscale convective system[J]. Advances in Meteorology (1):1-17. DOI:10.1155/2015/763919.
[8]曹冬杰, 2016.风云四号静止卫星闪电成像仪监测原理和产品算法研究进展[J].气象科技进展, 6(1):94-98. DOI:10.3969/j.issn.2095-1973.2016.01.014.
[9]陈志雄, 郄秀书, 田野, 等, 2017.云分辨尺度下一种综合调整水物质含量的闪电资料同化方法[J].气象学报, 75(3):442-459. DOI:10.11676/qxxb2017.035.
[10]成勤, 王学良, 肖稳安, 等, 2011.我国中部五省云地闪电时空分布特征分析[J].暴雨灾害, 30(3):254-259. DOI:10.3969/j.issn.1004-9045.2011.03.009.
[11]范江琳, 马力, 青泉, 2014.四川盆地地闪与对流性降水和雷达回波的关系[J].气象科技, 42(1):118-124. DOI:10.19517/j.1671-6345.2014.01.019.
[12]冯建伟, 侯文豪, 范雪, 等, 2018.远距离地闪回击ELF/VLF电磁场传播特性的模拟分析[J].高原气象, 37(4):1102-1109. DOI:10.7522/j.issn.1000-0534.2018.00047.
[13]勾亚彬, 汪章维, 刘黎平, 等, 2017.雷达波束部分遮挡识别应用及效果评估[J].高原气象, 36(1):229-240. DOI:10.7522/j.issn.1000-0534.2016.00010.
[14]李炳元, 潘保田, 韩嘉福, 2008.中国陆地基本地貌类型及其划分指标探讨[J].第四纪研究, 28(4):535-543. DOI:10.3321/j.issn:1001-7410.2008.04.004.
[15]梁华, 鲍书龙, 陈强, 等, 2017. FY-4卫星闪电成像仪设计与实现[J].上海航天, 34(4):43-51. DOI:10.19328/j.cnki.1006-1630.2017.04.006.
[16]郄秀书, 刘冬霞, 孙竹玲, 2014.闪电气象学研究进展[J].气象学报, 72(5):1054-1068. DOI:10.11676/qxxb2014.048.
[17]石湘波, 黄旋旋, 沈一平, 等, 2015.不同下垫面雷暴雷达回波特征与地闪的关系[J].气象科技, 43(5):880-887. DOI:10.19517/j.1671-6345.2015.05.017.
[18]石玉恒, 张义军, 郑栋, 等, 2012.北京地区雷暴的雷达回波特征与闪电活动的相关关系[J].气象, 38(1):66-71. DOI:10.7519/j.issn.1000-0526.2012.1.007.
[19]谭涌波, 向春燕, 马肖, 等, 2017.冰晶核化对雷暴云闪电行为影响的数值模拟研究[J].气象学报, 75(2):328-341. DOI:10.11676/qxxb2017.015.
[20]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38(4):756-772. DOI:10.7522/j.issn.1000-0534.2019.00035.
[21]王曙东, 裴翀, 郭志梅, 等, 2011.基于SRTM数据的中国新一代天气雷达覆盖和地形遮挡评估[J].气候与环境研究, 16(4):459-468. DOI:10.3878/j.issn.1006-9585.2011.04.06.
[22]王学良, 刘学春, 黄小彦, 等, 2010.湖北地区云地闪电时空分布特征分析[J].气象, 36(10):91-96. DOI:10.7519/j.issn.1000-0526.2010.10.015.
[23]王延东, 周筠珺, 王喜阳, 等, 2014.闪电资料在中尺度WRF模式中同化方法的研究[J].热带气象学报, 30(2):281-292. DOI:10.3969/j.issn.1004-4965.2014.02.009.
[24]肖艳姣, 2007.新一代天气雷达三维组网技术及其应用研究[D].南京: 南京信息工程大学, 1-117.
[25]肖艳姣, 刘黎平, 2006.新一代天气雷达网资料的三维格点化及拼图方法研究[J].气象学报, 64(5):647-657. DOI:10.3321/j.issn:0577-6619.2006.05.011.
[26]肖艳姣, 刘黎平, 杨洪平, 2008.基于天气雷达网三维拼图的混合反射率因子生成技术[J].气象学报, 66(3):470-473. DOI:10.3321/j.issn:0577-6619.2008.03.016.
[27]徐良韬, 张义军, 张文娟, 等, 2016.台风莫拉菲(2009)登陆前后电荷结构演变的模拟研究[J].气象学报, 74(6):1002-1016. DOI:10.11676/qxxb2016.071.
[28]杨超, 肖稳安, 冯民学, 等, 2009.强对流天气雷达回波与闪电特征的个例分析[J].气象科学, 29(3):403-407. DOI:10.3969/j.issn.1009-0827.2009.03.021.
[29]张腾飞, 段旭, 张杰, 等, 2011.云南强对流暴雨的闪电和雷达回波特征及相关性[J].热带气象学报, 27(3):379-386. DOI:10.3969/j.issn.1004-4965.2011.03.011.
[30]张义军, 马明, 吕伟涛, 等, 2008.闪电活动的气候学特征研究进展[J].气象学报, 66(6):906-915. DOI:10.3321/j.issn:0577-6619.2008.06.006.
文章导航

/