论文

2015-2017年中国近地面O3污染状况与影响因素分析

  • 李苹 ,
  • 余晔 ,
  • 赵素平 ,
  • 董龙翔 ,
  • 闫敏
展开
  • 中国科学院西北生态环境资源研究院 寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;中国科学院大学, 北京 100049;中国科学院平凉陆面过程与灾害天气观测研究站, 甘肃 平凉 744015;甘肃省陆面过程与灾害天气野外科学观测研究站, 甘肃 平凉 744015

收稿日期: 2019-04-15

  网络出版日期: 2019-12-28

基金资助

国家自然科学基金项目(41575014);中科院青促会项目(2017462)

Situation and Influencing Factors of Ground-level Ozone Pollution in China from 2015 to 2017

  • LI Ping ,
  • YU Ye ,
  • ZHAO Suping ,
  • DONG Longxiang ,
  • YAN Ming
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China;Pingliang Land Surface Process & Severe Weather Research Station, Pingliang 744015, Gansu, China;Gansu Land Surface Process & Severe Weather Observation and Research Station, Pingliang 744015, Gansu, China

Received date: 2019-04-15

  Online published: 2019-12-28

摘要

利用2015-2017年环保部发布的近地面臭氧(O3)和其他3种污染物[粒径小于2.5 μm的颗粒物(PM2.5)、一氧化碳(CO)、二氧化氮(NO2)]小时浓度数据和美国国家气候资料中心收集的气象要素监测数据,分析了中国近地面O3污染状况,并用逐步回归方法分析了影响O3重污染区域夏季近地面O3浓度的因素。结果表明,2015-2017年我国O3日最大8 h滑动平均浓度(O3 MDA8)年平均值分别为83.02±16.79,87.05±14.32和94.70±13.89 μg·m-3。O3 MDA8浓度逐年增长(增长率14.07%),其中冬季增长最快(增长率范围14.67%~34.32%),夏季增长最慢(增长率范围2.32%~14.16%)。京津冀、长三角、山东半岛、川渝和中原地区近地面O3污染较重,影响这5个区域近地面O3浓度的主要因素为温度、相对湿度和PM2.5,除此之外京津冀和川渝地区的近地面O3浓度受NO2影响明显,中原地区的近地面O3浓度受CO影响明显。

本文引用格式

李苹 , 余晔 , 赵素平 , 董龙翔 , 闫敏 . 2015-2017年中国近地面O3污染状况与影响因素分析[J]. 高原气象, 2019 , 38(6) : 1344 -1353 . DOI: 10.7522/j.issn.1000-0534.2019.00066

Abstract

Based on hourly concentration of ozone (O3) and other three pollutants (fine particles with a diameter of 2.5 μm or less (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2)) released by the Chinese Ministry of Environmental Protection from 2015 to 2017, and the meteorological data archived by National Climatic Data Center, the situation of ground-level O3 pollution in China was analyzed. The factors influencing summer ground-level O3 in heavily polluted areas was evaluated by stepwise regression. The results showed that the annual mean of daily maximum 8-hour average ozone concentration (O3 MDA8) in China during the years of 2015-2017 were 83.02±16.79, 87.05±14.32 and 94.70±13.89 μg·m-3 respectively. The exceeding rates of O3 MDA8 were 6.61%±6.47%, 6.74%±6.25% and 8.95%±7.61% respectively. The ground-level O3 pollution in China is very heavy and the situation is becoming worse. The concentration of O3 MDA8 increased (growth rate was 14.07%) from 2015 to 2017, with the fastest increase in winter (growth rate ranged from 14.67% to 34.32%) and the slowest increase in summer (growth rate ranged from 2.32% to 14.16%), which could be attributed to the growing concentration of O3 in background. Summer was the most polluted season of ground-level O3, with exceeding rate of 14.93%±16.31%, while the exceeding rate were 8.92%±9.27% in spring, 5.49%±6.80% in autumn and 0.28%±1.27% in winter. The ground-level O3 pollution in the five most developed areas of China, i. e. Jinjingji, Yangtze River delta, Shangdong Peninsula, Chuanyu and Central China regions, was heavier than other areas. Temperature, relative humidity and PM2.5 were the main factors affecting O3 MDA8 in these five heavily polluted areas. In addition, the O3 MDA8 in Jinjingji and Chuanyu were more affected by NO2 compared to the other three heavily polluted areas, which could be explained by the large number of vehicles in these two areas. The O3 MDA8 in Central China regions were more affected by CO than in other areas, which could be attributed to the large usage of coal in this area. This study is helpful to deeply understand the current situation of O3 pollution in China, and provides a reference for policy maker to formulate targeted prevention and control measures.

参考文献

[1]Andersson C, Alpfjord H, Robertson L, et al, 2017. Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990-2013[J]. Atmospheric Chemistry and Physics, 17(22):13869-13890.
[2]Barrero M A, Orza J A, Cabello M, et al, 2015. Categorisation of air quality monitoring stations by evaluation of PM(10) variability[J]. Science of the Total Environment, 524-525:225-236.
[3]Cooper O R, Parrish D D, Ziemke J, et al, 2014. Global distribution and trends of tropospheric ozone:An observation-based review[J]. Elementa:Science of the Anthropocene, 2:000029.
[4]Dickerson R R, Kondragunta S, Stenchikov G, et al, 1997. The impact of aerosols on solar ultraviolet radiation and photochemical smog[J]. Science, 278(5339):827-830.
[5]Due?as C, Fernández M, Ca?ete S, et al, 2002. Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast[J]. Science of the Total Environment, 299(1/3):97-113.
[6]EPA, 1998. Guideline on data handling conventions for the 8-hour ozone NAAQS[S].
[7]Fishman J, Crutzen P J, 1978. The origin of ozone in the troposphere[J]. Nature, 274(5674):855-858.
[8]Han X, Zhu L, Wang S, et al, 2018. Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015[J]. Atmospheric Chemistry and Physics, 18(16):12207-12221.
[9]Jin X, Holloway T, 2015. Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument[J]. Journal of Geophysical Research-Atmospheres, 120(14):7229-7246.
[10]Lee D S, Holland M R, Falla N, 1996. The potential impact of ozone on materials in the U. K[J]. Atmospheric Environment, 30(7):1053-1065.
[11]Lelieveld J, Dentener F J, 2000. What controls tropospheric ozone?[J]. Journal of Geophysical Research-Atmospheres, 105(D3):3531-3551.
[12]Li J, Chen X, Wang Z, et al, 2018. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia[J]. Science of the Total Environment, 622:1327-1342.
[13]Lippmann M, 2012. Health effects of ozone a critical review[J]. Japca, 39(5):672-695.
[14]Lu X, Zhang L, Chen Y, et al, 2019. Exploring 2016-2017 surface ozone pollution over China: Source contributions and meteorological influences[J]. Atmospheric Chemistry and Physics, Discussion.
[15]Monks P S, Granier C, Fuzzi S, et al, 2009. Atmospheric composition change-global and regional air quality[J]. Atmospheric Environment, 43(33):5268-5350.
[16]Otero N, Sillmann J, Mar K A, et al, 2018. A multi-model comparison of meteorological drivers of surface ozone over Europe[J]. Atmospheric Chemistry and Physics, 18(16):12269-12288.
[17]Schultz M G, Schr der S, Lyapina O, et al, 2017. Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations[DB/OL]. Elementa-Science of the Anthropocene, 19(34).
[18]Seinfeld J H, 2004. Air pollution:A half century of progress[J]. Aiche Journal, 50(6):1096-1108.
[19]Simon H, Reff A, Wells B, et al, 2015. Ozone Trends across the United States over a period of decreasing NOx and VOC emissions[J]. Environmental Science & Technology, 49(1):186-195.
[20]Simon H, Wells B, Baker K R, et al, 2016. Assessing temporal and spatial patterns of observed and predicted ozone in multiple urban areas[J]. Environmental Health Perspectives, 124(9):1443-1452.
[21]Song C, Wu L, Xie Y, et al, 2017. Air pollution in China:Status and spatiotemporal variations[J]. Environmental Pollution, 227:334-347.
[22]Su R, Lu K, Yu J, et al, 2018. Exploration of the formation mechanism and sourceattribution of ambient ozone in Chongqing with an observation-based model[J]. Science China-Earth Sciences, 61(1):23-32.
[23]Tan Z, Lu K, Jiang M, et al, 2018. Exploring ozone pollution in Chengdu, southwestern China:A case study from radical chemistry to O 3-VOC-NOx sensitivity[J]. Science of the Total Environment, 636:775-786.
[24]Trainer M, Parrish D, Goldan P, et al, 2000. Review of observation-based analysis of the regional factors influencing ozone concentrations[J]. Atmospheric Environment, 34(12/14):2045-2061.
[25]Tu J, Xia Z G, Wang H, et al, 2007. Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China[J]. Atmospheric Research, 85(3/4):310-337.
[26]Van Dingenen R, Dentener F J, Raes F, et al, 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment, 43(3):604-618.
[27]Volz A, Kley D, 1988. Evaluation of the montsouris series of ozone measurements made in the nineteenth century[J]. Nature, 332(6161):240-242.
[28]Walcek C J, Yuan H H, 1995. Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere[J]. Journal of Applied Meteorology, 34(5):1056-1069.
[29]Wang T, Wei X L, Ding A J, et al, 2009. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007[J]. Atmospheric Chemistry and Physics, 9(16):6217-6227.
[30]Wang N, Lyu X, Deng X, et al, 2019. Aggravating O-3 pollution due to NOx emission control in eastern China[J]. Science of the Total Environment, 677:732-744.
[31]Yuan T, Remer L A, Bian H, et al, 2012. Aerosol indirect effect on tropospheric ozone via lightning[J]. Journal of Geophysical Research:Atmospheres, 117(D18).
[32]Zheng B, Tong D, Li M, et al, 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 18(19):14095-14111.
[33]陈世俭, 童俊超, Kobayashi K, 等, 2005.气象因子对近地面层臭氧浓度的影响[J].华中师范大学学报(自然科学版), (2):273-277.
[34]窦艳, 王健, 向峰, 等, 2017.2015年云南省城市臭氧污染变化特征分析[J].云南大学学报(自然科学版), 39(3):440-446.
[35]焦铂洋, 苏昱丞, 郭胜利, 等, 2017.青藏高原臭氧谷的分布及其与太阳辐射的关系[J].高原气象, 36(5):1201-1208. DOI:10.7522/j.issn.1000-0534.2016.00106.
[36]李书博, 吴统文, 张洁, 等, 2015. BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象, 34(6):1601-1615. DOI:10.7522/j.issn.1000-0534.2014.00119.
[37]李霄阳, 李思杰, 刘鹏飞, 等, 2018.2016年中国城市臭氧浓度的时空变化规律[J].环境科学学报, 38(4):1263-1274.
[38]刘姝岩, 包云轩, 金建平, 等, 2018.重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J].高原气象, 37(1):296-304. DOI:10.7522/j.issn.1000-0534.2016.00141.
[39]彭超, 廖一兰, 张宁旭, 2018.中国城市群臭氧污染时空分布研究[J].地球信息科学学报, 20(1):57-67.
[40]吴锴, 康平, 于雷, 等, 2018.2015-2016年中国城市臭氧浓度时空变化规律研究[J].环境科学学报, 38(6):2179-2190.
[41]许亚宣, 李小敏, 史聆聆, 等, 2014.中原经济区区域大气污染特征及控制对策建议[C]//中国环境学学会.中国环境科学学会学术年会论文集(第六章).北京: 中国环境科学出版社.
[42]许亚宣, 李小敏, 于华通, 等, 2016.中原经济区能源消费视角下的大气环境压力评估[J].中国环境管理, 8(5):63-69.
[43]闫静, 王文川, 2013.盆地气候条件下成都市城区臭氧污染特性研究[C]//中国环境学学会.中国环境科学学会学术年会论文集(第五卷).北京: 中国环境科学出版社.
[44]张芳, 吴统文, 张洁, 等, 2016. BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象, 35(1):158-171. DOI:10.7522/j.issn.1000-0534.2014.00118.
[45]张倩倩, 张兴赢, 2019.基于卫星和地面观测的2013年以来我国臭氧时空分布及变化特征[J].环境科学(3):1-16.
[46]中华人民共和国环境保护部, 2013.环境空气质量评价技术规范(HJ 663-2013)[S].北京: 中国环境科学出版社.
文章导航

/