In order to deeply understand the correlation mechanism between runoff change and extreme temperature and precipitation indices in the upper reaches of Heihe River, the article use the daily temperature, precipitation data of Qilian, Tuole, Yeniugou meteorological stations and daily runoff data of the Yingluoxia hydrological station in the upper reaches of the Heihe River from 1960 to 2014, by means of trend analysis, correlation analysis, multiple regression analysis and principal component analysis to analyze the trends of climate indices and extreme hydrological events, and the correlation relationship between extreme climate indices and runoff, and the hysteresis effect of extream flooding on precipitation in the upper reaches of the Heihe River.The results show that: (1) The temperature indices characterized by low temperature in the upper reaches of the Heihe River shows a downward trend, and the extreme temperature indices indicating high temperature shows an upward trend.Extreme precipitation events showed a slight increase.Extreme flooding showed an increasing trend, and extreme low water showed a significant decreasing trend, which was consistent with the increasing trend of total runoff in the upper reaches of the Heihe River.(2) The correlation between extreme precipitation indices and extreme flooding is significant, indicating that precipitation in the upper reaches of the Heihe River is the main factor affecting runoff.(3) The response of the flood to the precipitation of the Qilian station has a lag of 1~2 days, Based on the preliminary analysis, it is concluded that the time and spatial difference of precipitation in the upper reaches of Heihe River and the difference of river network density in the east and west branches are the leading factors to produce hysteresis response.
[1]Caesar J, Alexander L V, Trewin B, al et, 2011.Changes in temperature and precipitation extremes over the Indo?Pacific region from 1971 to 2005[J].International Journal of Climatology, 31(6): 791-801.
[2]Jr R R H, 2015.An overview of weather and climate extremes?products and trends [J].Weather and Climate Extremes, 10: 1-9.
[3]IPCC, 2007.Climate change 2007: Impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC[M].Cambridge University Press, 2007.
[4]Min S K, Son S W, Seo K H, al et, 2015.Changes in weather and climate extremes over Korea and possible causes: A review[J].Asia Pacific Journal of Atmospheric Sciences, 51(2): 103-121.
[5]Pearson K, 1901.Principal components analysis[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2): 559.
[6]You Q, Kang S, Aguilar E, al et, 2011.Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J].Climate Dynamics, 36 (11/12): 2399-2417.
[7]陈锐杰, 刘峰贵, 陈琼, 等, 2018.近 60 年青藏高原东北缘极端气温事件与气温日较差分析—以西宁地区为例[J].高原气象, 37(5): 1188-1198.DOI: 10.7522/j.issn.1000-0534.2018.00022.
[8]程建忠, 2016.黑河中游径流变化规律分析及趋势预测[J].甘肃水力水电技术, 52(2): 6-10.
[9]崔延华, 宋悦, 粟晓玲, 2017.祁连山区气候变化对黑河出山径流的影响[J].人民黄河, 39(5): 15-20.
[10]董立峰, 邵金花, 李德一, 等, 2012.黄河三角洲典型流域径流变化及其对降水的滞后性分析[J].滨州学院学报, 28(3): 39-41.
[11]傅丽昕, 陈亚宁, 李卫红, 等, 2008.塔里木河三源流区气候变化对径流量的影响[J].干旱区地理, 31(2): 238-242.
[12]龚家栋, 李吉均, 2000.黑河上游水系发育特征分析[J].中国沙漠, 20(4): 389-392.
[13]郭阳, 张廷军, 曹琳, 等, 2018.黑河上游地表冻融指数与径流关系[J].水土保持通报, 38(3): 222-227.
[14]蒋艳, 周成虎, 程维明, 2005.阿克苏河流域径流补给及径流变化特征分析[J].自然资源学报, 20(1): 27-34.
[15]蓝永超, 丁永建, 康尔泗, 2004.近50年来黑河山区汇流区温度及降水变化趋势[J].高原气象, 23(5): 723-727.
[16]雷声剑, 张福平, 燕玉超, 等, 2016.黑河上游植被覆盖时空变化特征及其未来趋势[J].水土保持通报, 36(3): 160-164.
[17]李林, 王振宇, 汪青春, 2006.黑河上游地区气候变化对径流量的影响研究[J].地理科学, 269(1): 40-46.
[18]李培都, 司建华, 冯起, 等, 2018.1958-2015年敦煌及周边地区极端降水事件的时空变化特征[J].高原气象, 37(2): 535-544.DOI: 10.7522 /j.issn.1000-0534.2017.00055.
[19]李庆祥, 黄嘉佑, 2012.北京极端低温事件的长期变化特征[J].高原气象, 31(4): 1145-1150.
[20]刘军号, 雷鸣, 程铁杰, 2018.基于多元统计的河流年度径流预报及误差分析[J].安徽农学通报, 24(17): 111-113.
[21]刘晓云, 岳平, 徐殿祥, 2006.酒泉市最近54 a气温和降水特征分析[J].干旱区研究, 23(3): 495-499.
[22]罗开盛, 陶福禄, 2018.黑河径流对LUCC和气候变化的敏感性分析[J].干旱区研究, 35(4): 753-760.
[23]潘钊, 孙自永, 马瑞, 等, 2018.黑河上游高寒山区降雨-径流形成过程的同位素示踪[J].地球科学, 43(11): 4226-4236.
[24]任梅芳, 庞博, 徐宗学, 等, 2018.基于随机森林模型的雅鲁藏布江流域气温降尺度研究[J].高原气象, 37(5): 1241-1253.DOI: 10.7522/j.issn.1000-0534.2018.00026.
[25]阮宏威, 邹松兵, 陆志翔, 等, 2017.耦合SWAT与RIEMS模拟黑河径流山区径流[J].冰川冻土, 39(2): 384-394.
[26]王婷婷, 冯起, 李宗省, 等, 2018.1960-2012年祁连山东段古浪河流域极端气候事件研究[J].冰川冻土, 40(3): 598-606.
[27]王玉洁, 秦大河, 2017.气候变化及人类活动对西北干旱区水资源影响研究综述[J].气候变化研究进展, 13(3): 483-493.
[28]王毓森, 2017.基于R语言的加权马尔卡夫链在黑河流域径流预测中的应用[J].甘肃水力水电技术, 53(5): 1-4.
[29]王月华, 2017.河西内陆河流域极端降水和气温变化特征及其水文响应[D].北京: 中国地质大学, 1-80.
[30]魏天锋, 刘志辉, 姚俊强, 等, 2015.呼图壁河径流过程对气候变化的响应[J].干旱区资源与环境, 29(4): 102-107.
[31]杨春利, 蓝永超, 王宁练, 等, 2017.1958-2015年疏勒河上游出山径流变化及其气候因素分析[J].地理科学, 37(12): 1894-1899.
[32]杨帆, 2011.区域气候背景下流域极端气候与水文事件的关系研究[D].郑州: 郑州大学, 1-78.
[33]张立峰, 闫浩文, 杨树文, 等, 2018.黑河流域植被覆盖变化及其对地形的响应[J].遥感信息, 33(2): 46-52.
[34]张喜风, 2014.黑河上游气候变化对出山口径流的驱动分析[J].长江流域资源与环境, 23(4): 542-548.
[35]张晓龙, 周继华, 蔡文涛, 等, 2018.基于3S技术的黑河流域1∶ 100000植被制图[J].西北师范大学学报(自然科学版), 54(2): 95-101.
[36]张艳林, 常晓丽, 梁继, 等, 2016.高寒山区冻土对水文过程的研究-以黑河上游八宝河为例[J].冰川冻土, 38(5): 1362-1372.
[37]张耀宗, 张勃, 吕永清, 2008.祁连山区流域径流变化及影响因子研究—以讨赖河为例[J].干旱区资源与环境, 22(7): 109-114.
[38]赵娜, 曾小凡, 刘寒, 2018.基于HBV的黑河流域径流对气候变化的响应[J].人民长江, 49(12): 34-37.
[39]邹全, 王国亚, 贺斌, 等, 2013.1957-2010年天山玛纳斯河流域夏季径流及洪水过程对极端气候事件的响应[J].冰川冻土, 35(3): 733-740.