论文

影响初夏江淮流域年代际极端干旱的欧洲关键区能量演变特征分析

  • 刘诗梦 ,
  • 张杰 ,
  • 于涵
展开
  • <sup>1.</sup>气象灾害预报预警与评估协同创新中心/气象灾害省部共建教育部重点实验室, 南京信息工程大学, 江苏 南京 210044<br/><sup>2.</sup>内蒙古自治区气候中心, 内蒙古 呼和浩特 010000<br/><sup>3.</sup>辽阳市气象局, 辽宁 辽阳;111000

收稿日期: 2019-05-20

  网络出版日期: 2020-02-28

基金资助

国家自然科学基金项目(41975083)

Analysis of Energy Evolution Characteristics of Key Areas in Europe Affecting Decadal Extreme Drought in Yangtze-Huaihe River Basin during the Pre-summer Period

  • Shimeng LIU ,
  • Jie ZHANG ,
  • Han YU
Expand
  • <sup>1.</sup>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological isaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;<sup>2.</sup>Climate center of Inner Mongolia autonomous region, Hohhot 010000, Inner Mongolia, China

Received date: 2019-05-20

  Online published: 2020-02-28

摘要

利用欧洲中期天气预报中心(European Centre for Medium?Range Weather Forecasts, ECMWF)提供的全球再分析数据, 使用局地多尺度能量涡度分析法(localized Multiscale Energy and Vorticity Analysis, MS?EVA)分析了初夏影响江淮流域极端干旱发生的欧洲关键区动能变率的时间特征及其动能收支。结果表明: 初夏欧洲关键区高层动能有增长趋势时, 我国江淮流域极易发生极端干旱事件。该处增长的动能主要来自天气尺度动能的传输, 其次来自气压梯度力做功和动能的垂直输送; 动能向有效位能的转换和季节平均尺度动能的传输是高层动能流失的原因。深入研究三项动能来源因子后发现: 上层增加的动能一部分来自低层北大西洋东岸和欧洲大陆西南地区的动能东传, 在欧洲辐合后向上输送, 为高层传递能量; 同时, 由于关键区地面热强迫增强, 使垂直风切变增大, 大气斜压稳定度降低, 气压梯度力做功项增大, 使得高层动能得到补充。在此期间, 由于地面加热, 天气尺度传输项对高层动能的传输量也增多。关键区增加的净能量经西风环流在江淮地区辐合, 有助于该地上空的脊增强, 促进了极端干旱事件发生。该结果从能量转换角度探究了江淮流域干旱发生的部分成因, 为干旱预估提供依据。

本文引用格式

刘诗梦 , 张杰 , 于涵 . 影响初夏江淮流域年代际极端干旱的欧洲关键区能量演变特征分析[J]. 高原气象, 2020 , 39(1) : 143 -152 . DOI: 10.7522/j.issn.1000-0534.2019.00004

Abstract

Based on the global reanalysis data provided by the European Center for Medium?Range Weather Forecasts (ECMWF), this paper analyzes the time characteristics of the dynamic variability and kinetic energy budget of the European key area that lead to extreme drought in the Yangtze?Huaihe river basin during the pre?summer period by using the multiscale energy and vorticity analysis (MS?EVA).It is found that in the early summer when the kinetic energy of high?level in European key area had a tendency to increase, extreme drought events easily occurred in the Yangtze?Huaihe river basin.The kinetic energy here mainly comes from the energy conversion from synoptic?scale eddy, followed by the pressure work and vertical transport of kinetic energy; Buoyancy conversion and energy conversion from the mean flow are outputs of high?level kinetic energy.Some of the increasing upper?strata kinetic energy comes from eastward kinetic energy of the east coast of the North Atlantic and the southwestern continent of Europe, and these energy is transported upwards after convergence in Europe to transfer energy to the upper strata which can transfer energy to higher levels.At the same time, due to the increase of ground heating in the key area, the vertical wind shear increases, the baroclinic stability decreases and the pressure work increases, which makes the upper kinetic energy supplemented.During this period, the energy conversion from synoptic?scale eddy also increased due to ground heating.The net energy added in the key area converges in the Yangtze?Huaihe river basin by the westerly circulation, which helps to enhance the ridge above the ground and promotes the occurrence of extreme drought events.This result explores part of the causes of drought in the Yangtze?Huaihe river basin from the perspective of energy conversion and provides a basis for drought prediction.

参考文献

[1]Bretherton C S, Smith C, Wallace J M, 1992.An intercomparison of methods for finding coupled patterns in climate data[J].Journal of Climate, 5(6): 541-560.
[2]Chen G S, Huang R H, Zhou L T, 2013.Baroclinic instability of the Silk Road pattern induced by thermal damping[J].Journal of Atmospheric Sciences, 70: 2875-2893.
[3]Duan A, Wang M, Lei Y, al et, 2013.Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J].Journal of Climate, 26(1): 261-275.
[4]Hoskins B J, James I N, White G H, 1983.The shape, propagation and mean?flow interaction of large?scale weather systems[J].Journal of the Atmospheric Sciences, 40(7): 1595-1612.
[5]Hoskins B J, 1981.The steady linear response of a spherical atmosphere to thermal and orographic forcing[J].Journal of the Atmospheric Sciences, 38(6): 1179-1196.
[6]Hsu P C, Li T, Tsou C H, 2011.Interactions between boreal summer intraseasonal oscillations and synoptic?scale disturbances over the western north Pacific.Part I: Energetics diagnosis[J].Journal of Climate, 24(24): 927-941.
[7]Hsu P C, Tsou C H, Hsu H H, al et, 2009.Eddy energy along the tropical storm track in association with ENSO[J].Journal of the Meteorological Society of Japan, 87(4): 687-704.
[8]Hu Q, Tawaye Y, Feng S, 2004.Variations of the northern hemisphere atmospheric energetics: 1948-2000[J].Journal of Climate, 17(10): 1975-1986.
[9]Huang J, Yu H, Guan X, al et, 2016.Accelerated dryland expansion under climate change[J].Nature Climate Change, 6(2): 166.
[10]Huang R H, 1992.Impacts of the tropical western Pacific on the East Asian summer monsoon[J].Journal of the Meteorological Society of Japan, 70(1B): 243-256.
[11]Jin D, Guan Z, Tang W, 2013.The extreme drought event during winter?spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region[J].Journal of Climate, 26(20): 8210-8222.
[12]Koteswaram P, 1958.The easterly jet stream in the tropics[J].Tellus, 10(1): 43-57.
[13]Lau K H, Lau N C, 1992.The energetics and propagation dynamics of tropical summertime synoptic?scale disturbances[J].Monthly Weather Review, 120(11): 2523.
[14]Lee E J, Jhun J G, Park C K, 2005.Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index[J].Journal of Climate, 18(21): 4381-4393.
[15]Liang X S, 2016.Canonical transfer and multiscale energetics for primitive and quasi?geostrophic atmospheres[J].Journal of the Atmospheric Sciences, 73(11): 4439-4468.
[16]Liang X S, Anderson D G M, 2007.Multiscale window transform[J].Multiscale Modeling & Simulation, 6(2): 437-467.
[17]Liang X S, Robinson A R, 2005.Localized multiscale energy and vorticity analysis: I.Fundamentals[J].Dynamics of Atmospheres & Oceans, 38(3/4): 195-230.
[18]Maloney E D, Hartmann D L, 2000.The madden?julian oscillation, dynamics barotropic, and north Pacific tropical cyclone formation.Part I: Observations[J].Journal of the Atmospheric Sciences, 58(17): 2545-2558.
[19]Maloney E D, 2003.The intra?seasonal oscillation and the energetics of summertime tropical western North Pacific synoptic?scale disturbances[J].Journal of the Atmospheric Sciences, 60(17): 2153-2168.
[20]Takaya K, Nakamura H, 1997.A formulation of a wave?activity flux for stationary rossby waves on a zonally varying basic flow[J].Geophysical Research Letters, 24(23): 2985-2988.
[21]Tsou C H, Hsu H H, Hsu P C, 2014.The role of multiscale interaction in synoptic?scale eddy kinetic energy over the western north Pacific in autumn[J].Journal of Climate, 27(10): 3750-3766.
[22]Wallace J M, Gutzler D S, 1981.Teleconnections in the geopotential height field during the Northern Hemisphere winter[J].Monthly Weather Review, 109(4): 784-812.
[23]Wallace J M, Smith C, Bretherton C S, 1992.Singular value decomposition of wintertime sea surface temperature and 500?mb height anomalies[J].Journal of Climate, 5(6): 561-576.
[24]Wang H J, He S P, 2015.The north China/Northeastern Asia severe summer drought in 2014[J].Journal of Climate, 28(17): 6667-6681.
[25]Wang S, Zuo H, 2016.Effect of the East Asian westerly jet's intensity on summer rainfall in the Yangtze River Valley and its mechanism[J].Journal of Climate, 29(7): 2395-2406.
[26]Wu G, Liu Y, Zhang Q, al et, 2007.The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J].Journal of Hydrometeorology, 8(4): 205-8.
[27]Wu G, Liu Y, Bian H, al et, 2012.Thermal controls on the Asian summer monsoon[J].Scientific Reports, 2(5): 404.
[28]Ying H, Li C, 2003.The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang?Huaihe River Basin[J].Advances in Atmospheric Sciences, 20(4): 540-553.
[29]Zhang J, Li L, Wu Z, al et, 2015a.Prolonged dry spells in recent decades over north‐central China and their association with a northward shift in planetary waves[J].International Journal of Climatology, 35(15): 4829-4842.
[30]Zhang L X, Zhou T J, 2015b.Drought over East Asia: A review[J].Journal of Climate, 28(8): 3375-3390.
[31]Zhang X, Cong Z, 2014.Trends of precipitation intensity and frequency in hydrological regions of China from 1956 to 2005[J].Global & Planetary Change, 117(3): 40-51.
[32]Zhao P, Chen L X, 2001.Interannual variability of atmospheric heat source/sink over the Qinghai?Xizang (Tibetan) Plateau and its relation to circulation[J].Advances in Atmospheric Sciences, 18(1): 106-116.
[33]陈官军, 魏凤英, 2012.基于低频振荡特征的夏季江淮持续性降水延伸期预报方法[J].大气科学, 36(3): 633-644.
[34]陈练, 2013.气候变暖背景下中国风速(能)变化及其影响因子研究[D].南京: 南京信息工程大学.
[35]段莹, 王文, 蔡晓军, 2013.PDSI、 SPEI及CI指数在2010/2011年冬、 春季江淮流域干旱过程的应用分析[J].高原气象, 32(4): 1126-1139.DOI: 10.7522/j.issn.1000-0534.2012.00106.
[36]贺海晏, 漆小平, 罗会邦, 1992.华南春季强对流天气过程的动能收支 (二): 辐散风和旋转风动能的收支和转换[J].热带气象, 8 (2): 125-133.
[37]贺懿华, 王晓玲, 金琪, 2006.南海热带对流季节内振荡对江淮流域旱涝影响的初步分析[J].热带气象学报, 22(3): 259-264.
[38]黄建平, 季明霞, 刘玉芝, 等, 2013.干旱半干旱区气候变化研究综述[J].气候变化研究进展, 9(1): 9-14.
[39]黄青兰, 刘伯奇, 李菲, 2017.由冬至夏北半球副热带地区大气热源的季节转换特征及其可能机制[J].大气科学, 41(5): 1010-1026.
[40]琚建华, 孙丹, 吕俊梅, 2008.东亚季风区大气季节内振荡经向与纬向传播特征分析[J].大气科学, 32(3): 523-529.
[41]刘诗梦, 张杰, 2018.近30年江淮流域夏季年代际干旱特征及其与欧亚西风环流异常的关系[J].高原气象, 37(3): 1254-1263.DOI: 10.7522/ j.issn.1000-0534.2018.00029.
[42]卢楚翰, 管兆勇, 李永华, 等, 2013.太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系[J].地球物理学报, 56(4): 1084-1094.
[43]梅士龙, 管兆勇, 2008.对流层上层斜压波包活动与2003 年江淮流域梅雨的关系[J].大气科学, 32(6): 1333-1340.
[44]祁海霞, 智协飞, 白永清, 2011.中国干旱发生频率的年代际变化特征及趋势分析[J].大气科学学报, 34(4): 447-455.
[45]漆小平, 贺海晏, 罗会邦, 1992.华南春季强对流天气过程的动能收支 (一): 总动能收支[J].热带气象, 8(1): 44-51.
[46]施能, 朱乾根, 古文保, 等, 1994.夏季北半球500 hPa月平均场遥相关型及其与我国季风降水异常的关系[J].南京气象学院学报, 17(1): 1-10.
[47]苏涛, 张世轩, 支蓉, 等, 2013.江淮流域夏季降水对前冬持续时间长短的响应[J].物理学报, 62(6): 517-525.
[48]孙建华, 卫捷, 傅慎明, 等, 2018.江淮流域持续性强降水过程的多尺度物理模型[J].大气科学, 42(4): 741-754.
[49]王素萍, 张存杰, 李耀辉, 等, 2014.基于标准化降水指数的1960-2011年中国不同时间尺度干旱特征[J].中国沙漠, 34(3): 827-834.
[50]吴国雄, 刘辉, 陈飞, 等, 1994.时变涡动输送和阻高形成—1980年夏中国的持续异常天气[J].气象学报, 52(3): 308-320.
[51]姚慧茹, 李栋梁, 2016.1971-2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报, 74(1): 60-75.
[52]叶笃正, 1996.长江黄河流域旱涝规律和成因研究[M].济南: 山东科学技术出版社.
[53]张韧, 董兆俊, 洪梅, 2010.影响副高活动的热力强迫作用—动力学解析模型[J].气象科学, 30(5): 646-649.
[54]朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法[M].北京: 气象出版社.
文章导航

/