为了得到适用于青藏高原积雪研究的高分辨率、 长时间序列的区域尺度资料, 利用近30年逐月区域气候系统模式BCC?CSM(m)模拟的1.125°×1.125°积雪深度资料、 卫星遥感反演的0.25°×0.25°积雪深度资料、 ERA?Interim 0.75°×0.75°地面感热再分析资料和中国气象数据网提供的0.5°×0.5°降水资料, 评估了BCC?CSM(m)模式对高原积雪深度时空演变的模拟性能及其对高原感热和我国夏季降水的影响, 为夏季降水预测提供参考依据。结果表明, BCC?CSM(m)模式能够较好再现冬季高原积雪的时空变化特征, 在缺少有效实测积雪资料的高原地区不失为一种分辨率高、 时间序列长的代用资料。冬季高原积雪和春季地表感热之间存在反相变化, 而且两者的空间分布型存在显著的负相关关系。冬季高原积雪与我国夏季降水存在一定的相关关系, 即: 与长江中下游地区、 四川地区、 新疆北部地区、 东北东部和高原南部夏季降水呈显著正相关关系, 而与华南和东北北部地区呈显著负相关关系。冬季高原积雪存在全区多雪型、 全区少雪型、 东南少西北多型和东南多西北少型4种空间分布模态, 而且不同高原积雪模态对我国夏季降水的影响不同。
In order to obtain the effective, long?term sequence and regional scale data suitable for the snow study of the Qinghai?Tibetan Plateau (QTP), utilizing the snow depth data over the QTP from BCC?CSM(m) model and satellite remote, the sensible heat flux data from ECMWF and precipitation data from National Meteorological Information Center, the simulation performance of the snow depth over the QTP from BCC?CSM(m) model was evaluated and the influences of snow depth over the QTP on summer precipitation in China were analyzed to provide the reference for predicting summer precipitation in China.The main conclusions are as follows: (1) The spatial and temporal characteristics of winter snow over the QTP can been better reproduced by the snow depth data from BCC?CSM(m) model.It can be regarded as an alternative snow data with high resolution over the QTP lacking of the measured snow data.(2) It is shown that there occurs an inverse change over the QTP between snow in winter and surface sensible heat in spring.That is, the surface sensible heat is low in spring in the areas with more snow in winter over the QTP, due to the blocking effect of snow cover.While in the areas with less snow cover, the opposite is true.(3) The influences of four winter snow modes over the QTP on summer precipitation in China are different.There are the significantly positive correlation area in the middle and lower reaches of the Yangtze River, Sichuan, North Xinjiang, the eastern Northeast China and the southern QTP, and the negatively correlation ones in South China and the northern Northeast China.(4) By using the EOF analyses, the four spatial distribution modes of snow depth over the QTP in winter are given, i.e.the snowy type in the whole region, the snowless type in the whole region, the more southeast and less northwest type and the less southeast and more northwest type.
[1]Chen H, Zhu Q A, Peng C H, al et, 2013.The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J].Global Change Biology, 19(10): 2940-2955.DOI: 10.1111/gcb.12277.
[2]Ding Y H, Wang Z Y, Sun Y, 2008.Inter?decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon, Part I: Observed evidences[J].International Journal of Climatology: A Journal of the Royal Meteorological Society, 28: 1139-1161.DOI: 10.1002/joc.1615.
[3]Kuang X X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J].Journal of Geophysical Research: Atmospheres, 121: 3979-4007.
[4]Liu X W, Wu T W, Yang S, al et, 2015.Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m)[J].Advances in Atmospheric Sciences, 32(8): 1156-1172.
[5]Pu Z X, Li X, Salomonson V V, 2007.MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J].Geophysical Research Letters, 34(6): L06706.DOI: 10.1029/2007GL029262.
[6]Taylor K E, Stouffer R J, Meehl G A, 2012.An overview of CMIP5 and the experiment design[J].Bulletin of the American Meteorological Society, 93: 485-498.DOI: 10.1175/BAMS-D-11-00094.1.
[7]Wu T W, Qian Z A, 2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J].Journal of Climate, 16: 2038-2051.
[8]Wu T W, Yu R C, Zhang F, al et, 2010.The Beijing Climate Center for Atmospheric General Circultation Model(BCC?AGCM2.0.1): Description and its performance for the present?day climate[J].Climate Dynamics, 34: 123-147.
[9]Xiong Y J, Xin X G, Kou X X, 2019.Simulation and projection of near?surface wind speeds in China by BCC?CSM models[J].Journal of Meteorological Research, 33(1): 149-158.
[10]Yao T D, Thompson L, Yang W, al et, 2012.Different glacier status with atmosphere circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9): 663-667.DOI: 10.1038/nclimate 1580.
[11]伯玥, 李小兰, 王澄海, 2014.青藏高原地区积雪年际变化异常中心的季节变化特征[J].冰川冻土, 36(6): 1353-1362.DOI: 10.7522/j.issn.1000-0240.2014.0162.
[12]车涛, 李新, 2004.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用, 19(5): 301-306.
[13]陈晓晨, 徐影, 许崇海, 等, 2014.CMIP全球气候模式对中国地区降水模拟能力的评估[J].气候变化研究进展, 10(3): 217-225.DOI: 10.3969/j.issn.1673-1719.2014.03.011.
[14]除多, 洛桑曲珍, 林志强, 等, 2018.近30年青藏高原雪深时空变化特征分析[J].气象, 44(2): 233-243.
[15]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.10000-0534.2017.00099.
[16]段安民, 肖志祥, 吴国雄, 2016.1079 -2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展, 12(5): 374-381.DOI: 10.12006/j.issn.1673-1719.2016.039.
[17]段安民, 肖志祥, 王子谦, 2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42(4): 755-766.DOI: 10.3878/j.issn.1006-9895.1801.17247.
[18]葛全胜, 郑景云, 郝志新, 等, 2014.过去2000年中国气候变化研究的新进展[J].地理学报, 69(9): 1248-1258.DOI: 10. 11821/dlxb201409001.
[19]韩振宇, 吴波, 辛晓歌, 2017.BCC?CSM1.1气候模式对全球海表温度年际变化的回报能力评估[J].地球科学进展, 32(4): 396-408.DOI: 10.11867/j.issn.1001-8166.2017.04.0396.
[20]姜燕敏, 黄安宁, 吴昊旻, 2015.不同水平分辨率BCC_CSM模式对中亚地面气温模拟能力评估[J].大气科学, 39(3): 535-547.DOI: 0.3878/j.issn.1006-9895.1408.14133.
[21]刘超, 刘屹岷, 刘伯奇, 2015.6种地表热通量资料在伊朗—青藏高原地区的对比分析[J].气象科学, 35(4): 398-404.DOI: 10. 3969/2014jms.0038.
[22]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2): 317-324.DOI: 10.7522/j.issn.1000-0534.2017.00040.
[23]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5): 1153-1164.DOI: 10.7522/j.issn. 1000-0534.2016.00117.
[24]吴国雄, 何编, 刘屹岷, 等, 2016.青藏高原和亚洲夏季风动力学研究的新进展[J].大气科学, 40(1): 22-32.DOI: 10.3878/j.issn.1006-9895.1504.15129.
[25]吴统文, 宋连春, 刘向文, 等, 2013.国家气候中心短期气候预测模式系统业务化进展[J].应用气象学报, 24(5): 533-543.
[26]辛晓歌, 吴统文, 张洁, 2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展, 8(5): 378-382.DOI: 10. 3969/j.issn.1673-1719.2012.05.010.
[27]徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1): 20-35.DOI: 10.11676/qxxb2014.051.
[28]张芳, 董敏, 吴统文, 2014.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报, 72(1): 30-48.DOI: 10.11676/qxxb2014.011.
[29]张莉, 吴统文, 辛晓歌, 等, 2013.BCC?CSM模式对热带降水年循环模态的模拟[J].大气科学, 37(5): 994-1012.DOI: 10. 3878/j.issn.1006-9895.2012.12126.
[30]周天军, 陈晓龙, 吴波, 2019.支撑“未来地球”计划的气候变化科学前沿问题[J].科学通报, 64(19): 1967-1974.DOI: 10. 1360/N972018-00818.
[31]周天军, 邹立维, 吴波, 等, 2014.中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J].气象学报, 72(5): 892-907.DOI: 10.11676/qxxb2014.083.
[32]周鑫, 李清泉, 孙秀博, 等, 2014.BCC_CSM1.1模式对我国气温的模拟和预估[J].应用气象学报, 25(1): 95-106.