[1]Bedka S T, Feltz W F, Schreiner A J, al et, 2007. Satellite derived cloud top pressure product validation using aircraft-based cloud physics lidar data from the ATReC field campaign[J]. International Journal of Remote Sensing, 28: 2221-2239.
[2]Chahine M T, 1974. Remote sounding of cloudy atmospheres. I. The single cloud layer[J]. Journal of the Atmospheric Sciences, 31(1): 233-243.
[3]Dong X Q, Minnis P, Xi B K, al et, 2008. Comparison of CERES?MODIS stratus cloud properties with ground?based measurements at the DOE ARM Southern Great Plains site[J]. Journal of Geophysical Research: Atmospheres, 113: D03204. DOI: 10. 1029/2007JD008438.
[4]Frey R A, Baum B A, Menzel W P, al et, 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO<sub>2</sub> slicing[J]. Journal of Geophysical Research: Atmospheres, 104(D20):24547-24555.
[5]Goloub P, Herman M, Chepfer H, al et, 2000. Cloud thermo?dynamical phase classification from the POLDER spaceborne instrument[J]. Journal of Geophysical Research: Atmospheres, 105(D11):14747-14759.
[6]Hamada A, Nishi N, Iwasaki S, al et, 2008. Cloud type and top height estimation for tropical upper?tropospheric clouds using GMS?5 split?window measurements combined with cloud radar measurements[J]. Scientific Online Letters on the Atmosphere, 4(1): 57-60.
[7]Hasler A F, Mack R, Negri A, 1983. Stereoscopic observations from meteorological satellites[J]. Advances in Space Research, 2(6): 105-113.
[8]Hawkinson J A, Feltz W, Ackerman S A, 2005. A comparison of GOES Sounder?and cloud lidar?and radar?retrieved cloud?top heights[J]. Journal of Applied Meteorology, 44(8): 1234-1242.
[9]Kim S W, Chung E S, Yoon S C, al et, 2011. Intercomparisons of cloud?top and cloud?base heights from ground?based Lidar, CloudSat and CALIPSO measurements[J]. International Journal of Remote Sensing, 32(4): 1179-1197.
[10]Lavanant L, Fourrié N, Gambacorta A, al et, 2011. Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances[J].Quarterly Journal of the Royal Meteorological Society, 137(661): 1988-2003.
[11]Marchand R, Ackerman T, Smyth M, al et, 2010. A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS[J]. Journal of Geophysical Research: Atmospheres, 115(D16):D16206. DOI: 10.1029/2009JD013422.
[12]Min M, Wu C Q, Li C, al et, 2017. Developing the science product algorithm testbed for Chinese next generation geostationary meteorological satellites: Fengyun?4 series[J]. Journal of Meteorological Research, 31(4): 708-719.
[13]Naud C, Muller J P, Clothiaux E E, 2006. Assessment of multispectral ATSR2 stereo cloud?top height retrievals[J]. Remote Sensing of Environment, 104(3): 337-345.
[14]Platnick S, King M D, Ackerman S A, al et, 2003. The MODIS cloud products: Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 459-473.
[15]Schmit T J, Gunshor M M, Menzel W P, al et, 2005. Introducing the next?generation advanced baseline imager on GOES?R[J]. Bulletin of the American Meteorological Society, 86: 1079-1096.
[16]Schreiner A J, Schmit T J, Menzel W P, 2001. Observations and trends of clouds based on GOES sounder data[J]. Journal of Geophysical Research: Atmospheres,106(D17): 20349-20364.
[17]Smith Jr W L, Minnis P, Finney H, al et, 2008.An evaluation of operational GOES?derived single?layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site[J]. Geophysical Research Letters, 35(13): L13820. DOI: 10.1029/ 2008GL034275.
[18]Wang Z, Wang Z H, Cao X Z, al et, 2018. Comparison of cloud top heights derived from FY?2 meteorological satellites with heights derived from ground?based millimeter wavelength cloud radar[J]. Atmospheric Research, 199: 113-127.
[19]Yang J, Zhang P, Lu N M, al et, 2012. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond[J]. International Journal of Digital Earth, 5(3): 251-265.
[20]Yang J, Zhang Z Q, Wei C Y, al et, 2016. Introducing the new generation of Chinese geostationary weather satellites, FengYun?4 (FY?4)[J]. Bulletin of the American Meteorological Society, 98(8): 1637-1658. DOI: 10.1175/BAMS-D-16-0065.1.
[21]Yu Y, Tarpley D, Privette J L, al et, 2009. Developing algorithm for operational GOES?R land surface temperature product[J]. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 936-951.
[22]曹芸, 何永健, 邱新法, 等, 2012. 基于地面观测资料的MODIS云量产品订正[J]. 遥感学报, 16(2): 325-342.
[23]陈渭民, 2003. 卫星气象学[M]. 北京: 气象出版社, 112-133, 419.
[24]陈英英, 唐仁茂, 李德俊, 等, 2013.利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 32(4): 1148-1156. DOI: 10.7522/j.issn.1000-0534.2012.00108.
[25]董瑶海, 2016.风云四号气象卫星及其应用展望[J]. 上海航天, 33(2): 1-8.
[26]樊宏杰, 黄亦鹏, 李万彪, 2017. 基于卫星红外遥感的云顶高度反演算法综述[J]. 北京大学学报(自然科学版), 53(4): 783-792.
[27]范思睿, 王维佳, 2018.利用FY?4A卫星反演产品对飞机增雨作业的分析[J]. 高原山地气象研究, 38(4): 60-66. DOI: 10.3969/j.issn.1674-2184.2018.04.010.
[28]李典, 白爱娟, 黄盛军, 2012. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 31(2): 304-311.
[29]林琳, 黄思训, 杜华栋, 2006. MODIS数据的云顶高度反演[J]. 地球信息科学, 8(2): 106-109.
[30]刘健, 李云, 2011. 风云二号静止气象卫星的云相态识别算法[J]. 红外与毫米波学报, 30(4): 322-327.
[31]刘江涛, 徐宗学, 赵焕, 等, 2019. 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J]. 高原气象, 38(2): 386-396. DOI: 10.7522/j.issn.1000-0534.2018.00092.
[32]刘忠, 凌峰, 张秋文, 2005. MODIS遥感数据产品处理流程与大气数据获取[J]. 遥感信息(2: 52-57.
[33]陆风, 张晓虎, 陈博洋, 等, 2017. 风云四号气象卫星成像观测模式及其应用前景[J]. 海洋气象学报, 37(2): 1-12.
[34]吕达仁, 王普才, 邱金桓, 等, 2003. 大气遥感与卫星气象学研究的进展与回顾[J]. 大气科学, 27(4): 552-566.
[35]史兰红, 崔林丽, 赵兵科, 等, 2015. 台风眼壁及周围螺旋云带云属性垂直分布研究[J]. 热带气象学报, 31(1): 51-62.
[36]王胜杰, 何文英, 陈洪滨, 等, 2010. 利用CloudSat资料分析青藏高原、 高原南坡及南亚季风区云高度的统计特征量[J]. 高原气象, 29(1): 1-9.
[37]王宏斌, 张志薇, 刘端阳, 等, 2018. 基于葵花8号新一代静止气象卫星的夜间雾识别[J]. 高原气象, 37(6): 1749-1764. DOI: 10.7522 /j.issn.1000-0537.2018.00037.
[38]吴小丹, 闻建光, 肖青, 等, 2015. 关键陆表参数遥感产品真实性检验方法研究进展[J]. 遥感学报, 19(1): 75-92.
[39]徐小红, 余兴, 朱延年, 等, 2018. 6·23龙卷FY?2G卫星云微物理特征分析[J]. 高原气象, 37(6): 1737-1748. DOI: 10.7522/j.issn.1000-0534.2018.00041.
[40]张鹏, 郭强, 陈博洋, 等, 2016. 我国风云四号气象卫星与日本Himawari?8/9卫星比较分析[J]. 气象科技进展, 6(1): 72-75.
[41]张志清, 陆风, 方翔, 等, 2017. FY?4卫星应用和展望[J]. 上海航天, 34(4): 8-19.
[42]中国气象局, 2011. 气象卫星定量产品质量评价指标和评估报告要求(QX/T 127-2011)[S]. 北京: 气象出版社, 1-6.
[43]周毓荃, 陈英英, 李娟, 等, 2008. 用FY?2C/D卫星等综合观测资料反演云物理特性产品及检验[J]. 气象, 34(12): 27-35.
[44]赵震, 2019. 2016年台风“莫兰蒂”结构特征的多源卫星探测分析[J]. 高原气象, 38(1): 156-164. DOI: 10.7522 /j.issn.1000-0534.2018.00065.