论文

不同湖泊模式对青藏高原典型湖泊适用性对比研究

  • 宋兴宇 ,
  • 文莉娟 ,
  • 李茂善 ,
  • 杜娟 ,
  • 苏东生 ,
  • 阴蜀城 ,
  • 吕钊
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室, 四川 成都 610225;<sup>2.</sup>中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000

收稿日期: 2019-07-01

  网络出版日期: 2020-04-28

基金资助

中德科学中心中德合作项目(GZ1259);中科院“西部之光”计划“西部青年学者”A类项目(Y929641001);国家自然科学基金项目(91637107)

Comparative Study on Applicability of Different Lake Models to Typical Lakes in Qinghai-Tibetan Plateau

  • Xingyu SONG ,
  • Lijuan WEN ,
  • Maoshan LI ,
  • Juan DU ,
  • Dongsheng SU ,
  • Shucheng YIN ,
  • Zhao Lü
Expand
  • <sup>1.</sup>School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;<sup>2.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2019-07-01

  Online published: 2020-04-28

摘要

一维湖泊模式是青藏高原湖泊研究的主要手段之一, 但不同湖泊模式在青藏高原适用性及其差异依然不够明确。利用MODIS地表温度数据、 青藏高原鄂陵湖站点观测的气象数据、 湖温及湖面能量数据, 驱动、 评估和对比了目前应用最为广泛的两个一维湖泊模式Freshwater Lake Model(FLake)和Community Land Model version 4.5(CLM4.5)中耦合的湖泊模块在青藏高原典型湖泊的适用性。结果表明: FLake和CLM模式均能较好的对湖泊热力状况进行模拟, CLM模式对于湖表面温度和湖泊内部不同深度的温度模拟优于Flake模式, 净辐射和能量的累积也是CLM模式的模拟值更接近观测值。造成Flake模式模拟偏差更大的原因与模式中计算感热、 潜热的摩擦速度有关, 观测的摩擦速度均值为0.22 m·s-1, CLM模式中的摩擦速度与观测值接近, 为Flake模式的1.5倍, 将CLM模式中的摩擦速度替换到Flake模式中后模拟结果有明显的改善。

本文引用格式

宋兴宇 , 文莉娟 , 李茂善 , 杜娟 , 苏东生 , 阴蜀城 , 吕钊 . 不同湖泊模式对青藏高原典型湖泊适用性对比研究[J]. 高原气象, 2020 , 39(2) : 213 -225 . DOI: 10.7522/j.issn.1000-0534.2019.00102

Abstract

The one-dimensional lake model is one of the main means of lake research in the Qinghai-Tibetan Plateau, but the applicability and differences of different lake models in the Qinghai-Tibetan Plateau are still not clear enough.This paper uses the MODIS Surface Temperature data and observations of lake temperature and lake energy observed at the Ngoring in the Tibetan Plateau to drive, evaluate and compare two most widely used one-dimensional lake model: Freshwater Lake Model (FLake) and Community Land Surface model version 4.5 (CLM4.5) coupled lake module, applicability of typical lake in the Tibetan Plateau.The results show that both FLake and CLM can better simulate thermal condition of the lake, CLM simulates the lake surface temperature and the temperature of different depths of the lake is better than that of the FLake.CLM simulates the net radiation and the cumulative net energy flux is also close to the observations.The reason why FLake is more deviated from the observed value than the CLM is related to the friction velocity used to calculate the latent heat and sensible heat.The observed friction velocity average is 0.22 m·s-1, and the friction velocity in the CLM is close to the observed value about 1.5 times of FLake, after replacing the friction velocity in the CLM into FLake, the simulation results were significantly improved.

参考文献

[1]Crosman E T, Horel J D, 2009.MODIS-derived surface temperature of the Great Salt Lake[J].Remote Sensing of Environment, 113(1): 73-81.
[2]Foken T, Wimmer F, Mauder M, al et, 2006.Some aspects of the energy balance closure problem[J].Atmospheric Chemistry and Physics.6: 4395-4402.
[3]Foken T, Gash J H C, 2008.The energy balance closure problem[J].Ecological Applications, 18(6): 1351-1367.
[4]Hondzo M, Stefan H G, 1993.Regional water temperature characteristics of lakes subjected to climate change[J].Climatic Change, 24(3): 187-211.
[5]Hostetler S W, Bartlein P J, 1990.Simulation of lake evaporation with application to modeling lake level variation of Harney-Malheur Lake, Oregon[J].Water Resource Research, 26(10): 2603-2613.
[6]Hostetler S W, Giorgi F, 1992.Use of a regional atmospheric model to simulate lake-atmosphere feedbacks associated with Pleistocene Lakes Lahontan and Bonneville[J].Climate Dynamics, 7(1): 39-44.
[7]Hostetler S W, Bates G T, Giorgi F, 1993.Interactive coupling of a lake thermal model with a regional climate model[J].Journal of Geophysical Research, 98(D3): 5045-5057.
[8]Hulley G C, Hook S J, 2012.A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product[J].Journal of Geophysical Research, 117: D20117.DOI: 10.1029/2012JD018102.
[9]Hutohinson G E, 1957.A treatise on Limnology.Volume Ⅱ: Introduction to lake biology and the Limnoplankton[M].New York: Department of Biology Yale University.
[10]Kheyrollah P H, Duguay C R, Martynov A, al et, 2012.Simulation of surface temperature and ice cover of large northern lakes with 1-D models: A comparison with MODIS satellite data and in situ measurements[J].Tellus: A, 64(1): 17614.DOI: 10.3402/tellusa.v64i0.17614.
[11]La Z, Yang K, Wang J, al et, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J], Journal of Geophysical Research: Atmospheres, 121: 7578-7591.DOI: 10.1002/2015JD024523.
[12]Li Z G, Lv S H, Ao Y H, al et, 2015.Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau[J].Atmospheric Research, 155: 13-25.
[13]Ma R, Yang G, Duan H, al et, 2011.China’s lakes at present: Number, area and spatial distribution[J].Science China Earth Sciences, 54: 283-289.DOI: 10.1007/s11430-010-4052-6.
[14]Martynov A, Sushama L, Laprise R, 2010.Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models[J].Boreal Environment Research, 15(2): 143-164.
[15]Miles N L, Verlinde J, 2005.Observations of transient linear organization and norlinear scale interactions in Lake-Effect Clouds.Part I: Transient linear organization[J].Monthly Weather Review, 133: 667-691.
[16]Mironov D, 2008.Parameterization of lakes in numerical weather prediction Part1: Description of a lake model[R/OL].COSMO Tech.Rep.No.11.Deutscher Wetterdienst Offenbach am Main, Germany.[2019-07-01].https: //.
[17]Mironov D, Heise E, Kourzeneva E, al et, 2010.Implementation of the lake parameterization saheme FLake into the numerical weather prediction model COSMO[J].Boreal Environment Research, 15(2): 218-230.
[18]Nordbo A, Launiainen S, Mammarella I, al et, 2011.Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique[J].Journal of Geophysical Research Atmospheres, 116: D02119.
[19]Perroud M, Goyette S, Martynov A, al et, 2009.Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one‐dimensional lake models[J].Limnology and Oceanography, 54(5): 1574-1594.
[20]Schwartz M D, Karl T R, 1990.Spring phenology: Nature’s experiment to detect the effect of “green-up” on surface maximum temperatures[J].Monthly Weather Review, 118(4): 883-890.
[21]Song C, Huang B, Ke L, 2013.Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J].Remote Sensing of Environment, 135: 25-35.
[22]Stepanenko V M, Goyette S, Martynov A, al et, 2010.First steps of a Lake Model Intercomparison Project: LakeMIP [J].Boreal Environment Research, 15(2): 191-202.
[23]Stepanenko V M, Martynov A, J?hnk K D, al et, 2013.A one-dimensional model intercomparison study of thermal regime of a shallow turbid midlatitude lake[J].Geoscientific Model Development Discussions, 6: 1337-1352.DOI: 10.5194/gmd-6-1337-2013.
[24]Stepanenko V M, J?hnk K D, Machulskaya E, al et, 2014.Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models[J].Tellus: A, 66(2): 174-179.
[25]Subin Z M, Riley W J, Mironov D, 2012.An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4: 1-27.
[26]Thiery W, Martynov A, Darchambeau F, al et, 2014.Understanding the performance of the FLake model over two African Great Lakes[J].Geoscientific Model Development, 7(1): 317-337.
[27]Wan Z, Zhang Y, Zhang Q, al et, 2004.Quality assessment and validation of the MODIS global land surface temperature[J].International Journal Remote Sensing, 25(1): 261-274.
[28]Wen L J, Lv S H, Zhao L, al et, 2015.Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region on the Tibetan Plateau[J].Advances in Meteorology, 2015D14: 10.
[29]Wen L J, Lv S H, Kirillin G, al et, 2016.Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J].Tellus A, 68(1): 31091.
[30]Wilson K, Goldstein A, Falge A, al et, 2002.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology, 113(1/4): 223-243.
[31]Yeates P S, Imberger J, 2003.Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs[J].International Journal of River Basin Management, 1(4): 297-319.
[32]Zhang G, Yao T, Xie H, al et, 2014a.Lakes’ state and abundance across the Tibetan Plateau[J].Chinese Science Bulletin, 59 (24): 3010-3021.
[33]Zhang H, Shan B, Ao L, al et, 2014b.Past atmospheric trace metal deposition in a remote lake(Lake Ngoring)at the headwater areas of Yellow River, Tibetan Plateau[J].Environmental Earth Sciences, 72: 399-406.
[34]杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.
[35]方楠, 阳坤, 拉珠, 等, 2017.WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038.
[36]古红萍, 沈学顺, 金继明, 等, 2013.一维热扩散湖模式在太湖的应用研究[J].气象学报, 71(4): 719-730.
[37]李照国, 吕世华, 文莉娟, 等, 2016.一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J].高原气象, 35(5): 1200-1211.DOI: 10.7522/j.issn.1000-0534.2015.00076.
[38]闵文彬, 李跃清, 周纪, 2015.青藏高原东侧MODIS地表温度产品验证[J].高原气象, 34(6): 1511-1516.DOI: 10.7522/j.issn. 1000-0534.2014.00082.
[39]苏东生, 胡秀清, 文莉娟, 等, 2018.青海湖热力状况对气候变化响应的数值研究[J].高原气象, 37(2): 394-405.DOI: 10.7522/j.issn.1000-0534.2017.00069.
[40]苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象, 38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125.
[41]许洁, 马耀明, 孙方林, 等, 2018.湖泊和上风向地形对纳木错地区秋季降水影响[J].高原气象, 37(6): 1535-1543.DOI: 10. 7522/j.issn.1000-0534.2018.00054.
[42]许鲁君, 刘辉志, 2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报, 73(4): 789-802.
文章导航

/