论文

1979 -2016年青藏高原降水的变化特征及成因分析

  • 许建伟 ,
  • 高艳红 ,
  • 彭保发 ,
  • 王夏青
展开
  • <sup>1.</sup>湖南文理学院 资源环境与旅游学院, 湖南 常德 415000;<sup>2.</sup>洞庭湖生态经济区建设与发展湖南省协同创新中心, 湖南 常德 415000;<sup>3.</sup>复旦大学 大气科学研究院, 大气与海洋科学系, 上海 200438

收稿日期: 2018-12-11

  网络出版日期: 2020-04-28

基金资助

中科院寒旱区陆面过程与气候变化重点实验室开放基金项目(LPCC2017003);国家自然科学基金项目(41471114)

Change Characteristics of Precipitation and its Cause During 1979 -2016over the Qinghai-Tibetan Plateau

  • Jianwei XU ,
  • Yanhong GAO ,
  • Baofa PENG ,
  • Xiaqing WANG
Expand
  • <sup>1.</sup>College of Resource and Environment, Hunan University of Art and Sciences, Changde 415000, Hunan, China;<sup>2.</sup>Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone, Changde 415000, Hunan, China;<sup>3.</sup>Institute of Atmospheric Sciences & Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China

Received date: 2018-12-11

  Online published: 2020-04-28

摘要

利用青藏高原83个站点的降水观测资料, 分析了1979 -2016年青藏高原降水的变化特征, 并基于ERA-Interim再分析资料的高空要素场, 从水汽输送角度进行初步解释, 得到以下结论: (1)1979 -2016年高原整体年总降水量呈不显著的增加趋势, 5月降水显著增加, 变化速率达到4.25 mm·(10a)-1, 12月降水显著减小, 9月降水先减小后增加。高原不同气候区降水的年循环变化差异较大, 根据分布型态和降水峰值的变化将11个气候区分为三类: 降水峰值显著增大的气候区3个, 包括藏南地区、 青南高原和羌塘高原等半干旱区; 分布型态显著变化的气候区4个, 包括东喜马拉雅湿润区、 横断山脉东南部湿润区和中北部半湿润、 阿里干旱区; 变化较小的气候区4个, 包括祁连山半干旱区、 柴达木干旱区和若尔盖湿润区和果洛半湿润区。(2)从降水变化趋势的空间分布来看, 5月大部分站点的降水呈增加趋势, 中部站点变化显著。12月大部分站点的降水呈减小趋势。(3)5月、 9月和12月水汽输送通量散度的变化与降水的变化趋势在空间分布上具有一致性。5月南亚夏季风的提前、 增强, 导致高原西南季风加强, 进而导致高原5月降水增加。12月东亚500 hPa高度存在气旋式环流异常, 导致高原上空北风分量增强, 向高原输送了更多干冷空气, 从而导致12月高原降水减少。

本文引用格式

许建伟 , 高艳红 , 彭保发 , 王夏青 . 1979 -2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020 , 39(2) : 234 -244 . DOI: 10.7522/j.issn.1000-0534.2019.00029

Abstract

Precipitation change characteristics and its cause based on water vapor flux change in 1979 -2016 over the Qinghai-Tibetan Plateau (QTP) was analyzed, using precipitation observation from 83 stations and upper atmospheric fields from ERA-Interim.Main conclusions are drawn as following: (1) Annual precipitation averaged over the QTP shows increasing but non-significant trend in 1979 -2016.Precipitation significantly increases with the trend of 4.25 mm·(10a)-1 in May, but significantly decreases in December.Precipitation in September decreases at first and then increases.Annual variation shows different change characteristics in different climatic regions over the QTP.According to the changes in intra-annual distribution and peak value, 11 climatic regions can be classified into three types: 3 regions with large increase in peak value including southern Tibet, southern Qinghai and Chang Tang Plateau semi-arid region, 4 regions with large change in intra-annual distribution including east Himalaya and Southeast Hengduan Mountains humid region, north central Hengduan Mountains semi-humid region and Ali arid region, 4 regions with less change including Qilian Mountains semi-arid region, Chaidamu arid region, Ruoergai humid region and Guoluo semi-humid region.(2) In the case of precipitation trend distribution, most of the stations show increasing trend over the QTP in May, particularly for the middle region with significant change.Trends in December show overall decrease.(3) The distributions of water vapor flux divergence change are in good agreement with the distributions of precipitation trends in May, September and December.Advance and enhancement of South Asia monsoon brings more humid southwesterly, making more precipitation over the QTP in May.While in December, an anomalous anticyclone exists in the East Asia at 500 hPa, resulting in intensified northerly and associated dry cold air over the QTP, which leads to less precipitation.

参考文献

[1]Chen X Y, You Q L, 2017.Effect of Indian Ocean SST on Tibetan Plateau Precipitation in the Early Rainy Season[J].Journal of Climate, 30(22): 8973-8985.DOI: 10.1175/jcli-d-16-0814.1.
[2]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.DOI: 10.1002/qj.828.
[3]Gao, Y H, Lan C, Zhang Y X, 2014.Changes in moisture flux over the Tibetan Plateau during 1979 -2011 and possible mechanisms[J].Journal of Climate, 27(5): 1876-1893.DOI: 10. 1175/JCLI-D-13-00321.1.
[4]Immerzeel W W, Van Beek L P, Bierkens M F, al et, 2010.Climate change will affect the Asian water towers[J].Science, 328(5984): 1382-1385.DOI: 10.1126/science.1183188.
[5]Li X P, Wang L, Guo X Y, al et, 2017.Does summer precipitation trend over and around the Tibetan Plateau depend on elevation?[J].International Journal of Climatology, 37(S1): 1278-1284.DOI: 10.1002/joc.4978.
[6]Shen M G, Piao S L, Cong N, al et, 2015.Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J].Global Change Biology, 21(10): 3647-3656.DOI: 10.1111/gcb. 12961.
[7]Tong K, Su F G, Yang D Q, al et, 2014.Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J].International Journal of Climatology, 34(2): 265-285.DOI: 10.1002/joc.3682.
[8]Xu Z X, Gong T L, Liu L M, 2007.Detection of decadal trends in precipitation across the Tibetan Plateau[J].IAHS-AISH Publication, 271-276.
[9]Yang K, Ye B S, Zhou D G, al et, 2011.Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J].Climatic Change, 109(3): 517-534.DOI: 10.1007/s10584-011-0099-4.
[10]Zhang W X, Zhou T J, Zhang L X, 2017.Wetting and greening Tibetan Plateau in early summer in recent decades[J].Journal of Geophysical Research, 122(11): 5808-5822.DOI: 10.1002/2017JD026468.
[11]程国栋, 金会军, 2013.青藏高原多年冻土区地下水及其变化[J].水文地质工程地质, 40(1): 1-11.DOI: 10.16030/j.cnki.issn. 1000-3665.2013.01.017.
[12]丁一汇, 张莉, 2008.青藏高原与中国其他地区气候突变时间的比较[J].大气科学, 32(4): 794-805.
[13]丁一汇, 王绍武, 郑景云, 等, 2013.中国气候[M].北京: 科学出版社.
[14]段克勤, 姚檀栋, 王宁练, 等, 2008.青藏高原南北降水变化差异研究[J].冰川冻土, 30(5): 726-732.
[15]郭巧玲, 杨云松, 鲁学纲, 2011.黑河流域 1957-2008年径流变化特性分析[J].地理学报, 22(3): 77-81.
[16]黄荣辉, 陈际龙, 2010.我国东、 西部夏季水汽输送特征及其差异[J].大气科学, 34(6): 1035-1045.
[17]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn. 1000-0534.2016.00125.
[18]刘田, 阳坤, 秦军, 等, 2018.青藏高原中、 东部气象站降水资料时间序列的构建与应用[J].高原气象, 37(6): 1449-1457.DOI: 10.7522/j.issn.1000-0534.2018.00060.
[19]李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土, 38(5): 1233-1240.DOI: 10. 7522/j.issn.1000-0240.2016.0144.
[20]吴国雄, 段安民, 张雪芹, 等, 2013.青藏高原极端天气气候变化及其环境效应[J].自然杂志, 35(3): 167-171.
[21]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10. 7522/j.issn.1000-0534.2017.00030.
[22]郑然, 2015.全球变暧背景下青藏高原气候变化特征及对沙漠化的影响[D].南京: 南京信息工程大学.
[23]郑然, 李栋梁, 2016.1971 -2011年青藏高原干湿气候区界线的年代际变化[J].中国沙漠, 36(4): 1106-1115.
[24]张磊, 缪启龙, 2007.青藏高原近40年来的降水变化特征[J].干旱区地理, 30(2): 240-246.DOI: 10.13826/j.cnki.cn65-1103/x.2007.02.014.
文章导航

/