利用中国气象局逐小时区域站、 高空站、 逐小时风云2E卫星、 NCEP再分析数据资料以及WRF数值模式, 选取2018年8月1 -3日降水天气过程, 分析高原切变线形态演变对发生在高原边坡降水的影响。结果表明: (1)8月1 -3日降水过程主要影响系统为高原切变线, 1日和2日分别为此次降水过程的两个不同阶段, 两个降水阶段期间高原切变线由横切变线转为竖切变线; (2)在高原边坡, 与横切变线引起的降水相比, 竖切变线更容易产生强对流天气; (3)强降水发生时, 竖切变线激发的TBB值比横切变线的TBB值低10~20 K, 且TBB低值刚好与短时强降水发生的时间段相对应; (4)数值模式模拟结果表明在强降水发生阶段, 竖切变线的垂直速度、 水汽含量、 不稳定能量垂直梯度均表现为快速增强, 且增强的幅度明显大于横切变线的对应物理量; 此外, 降水强度的变化与垂直速度上升高度、 不稳定能量垂直梯度有很好的对应关系。
Based on hourly regional stations data, upper-air stations data and FY2E satellite data from China meteorological administration, NCEP reanalysis data and WRF model, the precipitation weather process on August 1-3, 2018 was selected to analyze the influence of the evolution of plateau shear line on the plateau slope, The results indicates that: (1) The plateau shear line is the main influence system in this process, days 1 and 2 are two different stages of the precipitation process, during which the plateau shear line changes from a transverse shear line to a vertical shear line.(2) Compared with the precipitation caused by transverse shear, Vertical shear is likely to cause strong convective precipitation.(3) When heavy precipitation occurs, the TBB value excited by the Vertical shear is 10~20 K lower than that of the transverse shear, and the low value of TBB is consistent with the time period of short-time heavy precipitation.(4) The model simulation results of these two processes generally show better skill.During the period of heavy precipitation, the vertical velocity, water vapor content and the vertical gradient of unstable energy of the vertical shear show rapid enhancement, and the amplitude of enhancement is obviously larger than that of the transverse shear, in addition, the change of precipitation intensity has a good correspondence with vertical velocity rising height and unstable energy vertical gradient.
[1]Duan H X, Li Y H, Zhang T J, al et, 2018.Evaluation of forecast accuracy of near-surface temperature and wind in Northwest China based on the WRF model[J].Journal of Meteorological Research, 32(3): 469-490.
[2]Zhang X, Yao X P, Ma J L, al et, 2016.Climatology of transverse shear lines and relationship with heavy rainfalls over the Tibetan Plateau during boreal summer[J].Journal of Meteorological Research, 30(6): 915-926.
[3]何光碧, 高文良, 屠妮妮, 2009.2000 -2007 年夏季青藏高原低涡切变线观测事实分析[J].高原气象, 28(3): 549-555.
[4]何光碧, 师锐, 2011.夏季青藏高原不同类型切变线的动力、 热力特征分析[J].高原气象, 30(3): 568-575.
[5]何光碧, 师锐, 2014.三次高原切变线过程演变特征及其对降水的影响[J].高原气象, 33(3): 615-625.DOI: 10.7522/j.issn. 1000-0534.2013.00023.
[6]李国平, 2007.青藏高原动力气象学(第二版)[M].北京: 气象出版社, 1-271.
[7]李山山, 李国平, 2017.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象, 36(2): 317-329.DOI: 10.7522/j.issn.1000-0534.2016.00025.
[8]刘自牧, 李国平, 张博, 2018.高原涡与高原切变线伴随出现的统计特征[J].高原气象, 37(5): 1233-1240.DOI: 10.7522/j.issn. 1000-0534.2018.00028.
[9]罗雄, 李国平, 2018.一次高原切变线过程的数值模拟与阶段性结构特征[J].高原气象, 37(2): 406-419.DOI: 10.7522/j.issn. 1000-0534.2017.00046.
[10]师锐, 何光碧, 2011.移出与未移出高原的高原切变线背景环流对比分析[J].高原气象, 30(6): 1453-1461.
[11]许东蓓, 张铁军, 任余龙, 等, 2009.2008年1月甘肃省连阴雪特征及成因分析[J].高原气象, 28(5): 1129-1139.
[12]徐国昌, 1983.青藏高原东侧700毫巴切变线的天气气候特征[J].高原气象, 2(3): 21-25.
[13]徐国昌, 1984.500毫巴高原切变线的天气气候特征[J].高原气象, 3(1): 36-41.
[14]姚秀萍, 孙建元, 马嘉理, 2017a.江淮切变线研究的回顾与展望[J].高原气象, 36(4): 1138-1151.DOI: 10.7522/j.issn.1000-0534.2017.00015.
[15]姚秀萍, 孙建元, 马嘉理, 2017b.江淮切变线研究的回顾与展望[J].高原气象, 36(4): 1138-1151.DOI: 10.7522/j.issn.1000-0534.2017.00015.
[16]叶笃正, 高由禧, 陈乾, 1977.青藏高原及其紧邻地区夏季环流的若干特征[J].大气科学, 1(4): 289-299.
[17]郁淑华, 高文良, 彭骏, 2013.近13年青藏高原切变线活动及其对中国降水影响的若干统计[J].高原气象, 32(6): 1527-1537.DOI: 10.7522/j.issn.1000-0534.2012.00149.
[18]郁淑华, 高文良, 顾清源, 2007.近年来影响我国东部洪涝的高原东移涡环流场特征分析[J].高原气象, 26(3): 466-465.
[19]郁淑华, 何光碧, 滕家膜, 1997.青藏高原切变线对四川盆地西部突 发性暴雨影响的数值试验[J].高原气象, 16(3): 306-311.
[20]赵大军, 姚秀萍, 2018, 高原切变线形态演变过程中的个例研究: 结构特征[J].高原气象, 37(2): 420-431.DOI: 10.7522/j.issn.1000-0534.2017.00066.