[1]Eugster W, Rouse W R, Pielke R A, al et, 2000.Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate[J].Global Change Biology, 6: 84-115.
[2]Flerchinger G N, Hanson C L, Wight J R, 1996.Modeling evapotranspiration and surface energy budgets across a watershed[J].Water Resources Research, 32(8): 2539-2548.
[3]Flerchinger G N, Pierson F B, 1991.Modeling plant canopy effects on variability of soil temperature and water[J].Agricultural & Forest Meteorology, 56(3/4): 227-246.
[4]Flerchinger G N, Saxton K E, 1989.Simultaneous heat and water model of a freezing snow-residue-soil system I.Theory and development[J].Transactions of the ASAE, 32(2): 565-0571.
[5]Gu L, Yao J, Hu Z, al et, 2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J].Atmospheric Research, 153: 553-564.
[6]Gu S, Tang Y, Cui X, al et, 2005.Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J].Agricultural and Forest Meteorology, 129(3): 175-185.
[7]Kurylyk B L, Macquarrie K T B, Mckenzie J M, 2014.Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools[J].Earth-Science Reviews, 138: 313-334.
[8]Li G, Duan T, Haginoya S, al et, 2001.Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data[J].Journal of the Meteorological Society of Japan.Ser.II, 79(2): 625-635.
[9]Ma N, Zhang Y, Guo Y, al et, 2015.Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J].Journal of Hydrology, 529: 980-992.
[10]Qiu J, 2008.China: The third pole[J].Nature, 454(7203): 393-396.
[11]Ran Y H, Li X, Cheng G D, al et, 2012.Distribution of permafrost in China: An overview of existing permafrost maps[J].Permafrost & Periglacial Processes, 23(4): 322-333.
[12]Shang L, Yu Z, Lü S, al et, 2015.Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau[J].Science Bulletin, 60(4): 435-446.
[13]Sitch S S B, Prentice I C, Arneth A, al et, 2010.Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J].Global Change Biology, 9(2): 161-185.
[14]Wang B, Fan Z, 1999.Choice of South Asian summer monsoon indices[J].Bulletin of the American Meteorological Society, 80(4): 629-638.
[15]Wen Z, Niu F, Yu Q, al et, 2014.The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau[J].Environmental Earth Sciences, 71(3): 1195-1204.
[16]Yang M, Nelson F E, Shiklomanov N I, al et, 2010.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J].Earth Science Reviews, 103(1): 31-44.
[17]Yao J, Zhao L, Gu L, al et, 2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmospheric Research, 102(4): 394-407.
[18]Zhang Y, Ohata T, Zhou J, al et, 2011.Modeling plant canopy effects on annual variability of evapotranspiration and heat fluxes for a semi-arid grassland on the southern periphery of the Eurasian cryosphere in Mongolia[J].Hydrological Processes, 25(8): 1201-1211.
[19]Zou D, Zhao L, Sheng Y, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere, 11(6): 2527-2542.
[20]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[21]谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051.
[22]郭东林, 杨梅学, 2010.SHAW模式对青藏高原中部季节冻土区土壤温、 湿度的模拟[J].高原气象, 29(6): 1369-1377.
[23]李瑞平, 史海滨, 赤江刚夫, 等, 2007.冻融期气温与土壤水盐运移特征研究[J].农业工程学报, 23(4): 70-74.
[24]刘杨, 赵林, 李韧, 2013.基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J].冰川冻土, 35(2): 280-290.
[25]穆文彬, 孙素艳, 马伟希, 等, 2019.若尔盖湿地潜在蒸散量演变特征及影响因素分析[J].高原气象, 38(4): 716-724.DOI: 10. 7522/j.issn.1000-0534.2018.00150.
[26]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6): 1470-1485. DOI: 10.7522/j.issn.1000-0534.2018.00040.
[27]王根绪, 沈永平, 钱鞠, 等, 2003.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土, 25(6): 653-659.
[28]王利辉, 何晓波, 丁永建, 2017.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土, 39(6): 1-6.
[29]王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.
[30]吴谋松, 王康, 谭霄, 等, 2013.土壤冻融过程中水流迁移特性及通量模拟[J].水科学进展, 24(4): 543-550.
[31]吴青柏, 牛富俊, 2013.青藏高原多年冻土变化与工程稳定性[J].科学通报, 58(2): 115-130.
[32]肖瑶, 赵林, 李韧, 等, 2011.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J].冰川冻土, 33(5): 1033-1039.
[33]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[34]张明礼, 温智, 董建华, 等, 2018.多年冻土活动层浅层包气带水-汽-热耦合运移规律[J].岩土力学, 39(2): 561-570.
[35]张明礼, 温智, 薛珂, 等, 2016.北麓河地区多年冻土地表能量收支分析[J].干旱区资源与环境, 30(9): 134-138.
[36]张伟, 周剑, 王根绪, 2013.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 35(3): 528-540.
[37]赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报, 45(11): 1205-1211.
[38]赵林, 李韧, 丁永建, 2008.唐古拉地区活动层土壤水热特征的模拟研究[J].冰川冻土, 30(6): 930-937.
[39]郑汇璇, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地总体输送系数及地面热源特征[J].高原气象, 38(3): 497-506.DOI: 10.7522/j.issn.1000-0534.2019.00024.
[40]周剑, 王根绪, 李新, 等, 2008.高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J].冰川冻土, 30(3): 398-407.