论文

滦河流域多时间尺度干旱时空特征分析

  • 王怡璇 ,
  • 陈伏龙 ,
  • 冯平 ,
  • 刘廷玺
展开
  • <sup>1.</sup>内蒙古农业大学水利与土木建筑工程学院/内蒙古自治区水资源保护与利用重点实验室, 内蒙古 呼和浩特 010018;<sup>2.</sup>石河子大学水利建筑工程学院, 新疆 石河子 832000;<sup>3.</sup>天津大学/水利工程仿真与安全国家重点实验室, 天津 300072

收稿日期: 2018-11-26

  网络出版日期: 2020-04-28

基金资助

国家自然科学基金项目(51909122);国家重点研发计划项目(2017YFC0404301);内蒙古自治区自然科学基金项目(2019BS05001);内蒙古农业大学引进优秀博士人才科研启动项目(NDYB2018-8)

Temporal and Spatial Characteristics of Drought on Multiple Time Scales in the Luanhe River Basin

  • Yixuan WANG ,
  • Fulong CHEN ,
  • Ping FENG ,
  • Tingxi LIU
Expand
  • <sup>1.</sup>Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University / Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, Inner Mongolia, China;<sup>2.</sup>College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832003, Xinjiang, China;<sup>3.</sup>State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

Received date: 2018-11-26

  Online published: 2020-04-28

摘要

以滦河潘家口水库控制流域26个雨量站1959 -2011年逐月降水数据为基础, 应用经验Copula函数建立了联合降水亏缺指数, 与标准化降水指数的干旱评价结果进行了对比, 并依据联合降水亏缺指数分析了1959 -2011年间流域干旱时空变化特征。结果表明: (1)联合降水亏缺指数综合了多时间尺度水分亏缺信息, 充分考虑干旱的累积效应, 避免了采用不同时间尺度标准化降水指数表征干旱时结论不一致的情况, 可以实现更全面客观的干旱监测及评估。(2)1959 -2011年, 滦河潘家口水库控制流域干旱发生频率总体上呈现夏秋多冬春少、 东南高西北低的规律; 干旱事件随时间持续增多, 特别是2010 -2011年极端干旱频繁发生; 相比西北部, 流域东南部的干旱事件历时更长、 强度更大; 在汛期(尤其是8 -9月)全流域存在较一致的干旱加剧趋势, 东南部趋势显著。联合降水亏缺指数能够有效地反映干旱时空特征及演变规律, 为区域干旱研究提供了新的技术途径。

本文引用格式

王怡璇 , 陈伏龙 , 冯平 , 刘廷玺 . 滦河流域多时间尺度干旱时空特征分析[J]. 高原气象, 2020 , 39(2) : 347 -356 . DOI: 10.7522/j.issn.1000-0534.2019.00034

Abstract

In order to provide more objective description of the overall drought status, this paper employed a joint precipitation deficit index by empirical Copula function to evaluate drought condition.The Panjiakou Reservoir catchment of Luanhe River basin was chose as the study area.The accumulated precipitation from 1- to 12-month were selected from the monthly precipitation data from 26 rain gauges during the period of 1959 -2011.Based on the values of standardized precipitation index and joint precipitation deficit index, we assessed and analyzed the drought conditions in the study area.It was demonstrated that the joint precipitation deficit index integrates the information of water deficit status at various time scales and takes a full consideration of the cumulative effects of drought.It also can avoid the inconsistent conclusions resulting from using standardized precipitation index with different time scales.In addition, the drought characteristics of the study area were analyzed according to the series of joint precipitation deficit index.The results indicated that the occurrence frequency of the drought generally increases from northwest to southeast, with higher frequency in summer and autumn.Compared with the northwestern part of the area, the drought events in the southeast are characterized with longer duration and more serious severity.Furthermore, a general tendency of drying was found in the flood season across the area, while significant aggravating trends in drought were detected in the southeastern part.The joint precipitation deficit index is capable of reflecting the drought spatial and temporal characteristics and evolution laws, thereby taking as a new technical way of studying regional drought.

参考文献

[1]Ayantobo O O, Li Y, Song S, al et, 2018.Probabilistic modelling of drought events in china via 2-dimensional joint copula[J].Journal of Hydrology, 559: 373-391.
[2]Byun H R, Wilhite D A, 1999.Objective quantification of drought severity and duration [J].Journal of Climate, 12(9): 2747-2756.
[3]Douglas E M, Vogel R M, Kroll C N, 2000.Trends in floods and low flows in the United States: Impact of spatial correlation [J].Journal of Hydrology, 240(1-2): 90-105.
[4]Kao S C, Govindaraju R S, 2008.Trivariate statistical analysis of extr-eme rainfall events via Plackett family of copulas[J].Water Resources Research, 44(2), W02415.DOI: 10.1029/2007WR006261.
[5]Kao S C, Govindaraju R S, 2010.A copula-based joint deficit index for droughts[J].Journal of Hydrology, 380(1): 121-134.
[6]McKee T B, Doesken N J, Kleist J, 1993.The relationship of drought frequency and duration to time scales[C].In: Proceedings of the 8th Conference on Applied Climatology.Boston: American Meteorological Society, 179-184.
[7]Modarres R, 2007.Streamflow drought time series forecasting[J].Stochastic Environmental Research and Risk Assessment, 21(3): 223-233.
[8]Sklar A, 1959.Fonctions de répartition à n dimensions et leurs marges[J].Publications of the Institute of Statistics, University of Paris, 8: 229-231.
[9]von Storch H, 1995.Misuses of statistical analysis in climate Research.In: von Storch H., Navarra A.(eds) Analysis of Climate Variability[M].Springer, Berlin, Heidelberg.
[10]Yue S, Wang C Y, 2002.Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J].Water Resources Research, 38(6): 1-7.
[11]程亮, 金菊良, 郦建强, 等, 2013.干旱频率分析研究进展[J].水科学进展, 24(2): 296-302.
[12]池再香, 夏阳, 刘莉娟, 等, 2018.基于积温干燥度指数的云贵高原东部汛期干湿变化趋势分析[J].高原气象, 37(5): 1199-1207. DOI: 10.7522/j.issn.1000-0534.2018.00075.
[13]冯平, 胡荣, 李建柱, 2014.基于三维对数线性模型的气象干旱等级预测研究[J].水利学报, 45(5): 505-512.
[14]冯平, 李建柱, 徐仙, 2008.潘家口水库入库水资源变化趋势及影响因[J].地理研究, 27(1): 213-220.
[15]高俊虎, 1998.三百年来承德地理环境演变趋势初探[J].干旱区研究, 15(2): 70-74.
[16]桓玉, 李跃清, 2018.夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J].高原气象, 37(6): 1563-1577.DOI: 10.7522/j.issn.1000-0534.2018.00044.
[17]卢全海, 王占升, 2010.承德市2009年夏季干旱成因分析及防灾减灾建议[J].河北水利, (4): 20-21.
[18]马海娇, 严登华, 翁白沙, 等, 2013.典型干旱指数在滦河流域的适用性评价[J].干旱区研究, 30(4): 728-734.
[19]马转转, 张明军, 王圣杰, 等, 2019.1960 -2015年青藏高寒区与西北干旱区升温特征及差异[J].高原气象, 38(1): 42-54.DOI: 10.7522/j.issn.1000-0534.2018.00074.
[20]毛东雷, 蔡富艳, 赵枫, 等, 2018.塔克拉玛干沙漠南缘近4年沙尘天气下的气象要素相关性分析[J].高原气象, 37(4): 1120-1128.DOI: 10.7522/j.issn.1000-0534.2018.00010.
[21]孙鹏, 张强, 陈晓宏, 2011.潘阳湖流域枯水径流演变特征、 成因与影响[J].地理研究, 30(9): 1701-1712.
[22]王春林, 司建华, 赵春彦, 等, 2019.河西走廊近57年来干旱灾害特征时空演化分析[J].高原气象, 38(1): 196-205.DOI: 10.7522/j.issn.1000-0534.2018.00081.
[23]王丹云, 吕世华, 韩博, 等, 2017.近30年黄土高原春季降水特征与春旱变化的关系[J].高原气象, 36(2): 395-406.DOI: 10. 7522/j.issn.1000-0534.2016.00121.
[24]肖名忠, 张强, 陈晓宏, 2012.基于多变量概率分析的珠江流域干旱特征研究[J].地理学报, 67(1): 83-92.
[25]杨志勇, 袁喆, 方宏阳, 等, 2013.基于Copula函数的滦河流域旱涝组合事件概率特征分析[J].水利学报, 44(5): 556-569.
[26]张立杰, 李健, 2018.基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征[J].高原气象, 37(2): 560-567.DOI: 10.7522/j.issn.1000-0534.2018.00013.
[27]张迎, 黄生志, 黄强, 等, 2018.基于Copula函数的新型综合干旱指数构建与应用[J].水利学报, 49(6): 703-714.
[28]张宇亮, 蒋尚明, 金菊良, 等, 2017.基于区域农业用水量的干旱重现期计算方法[J].水科学进展, 28(5): 691-701.
[29]章诞武, 丛振涛, 倪广恒, 2013.基于中国气象资料的趋势检验方法对比分析[J].水科学进展, 24(4): 490-496.
[30]郑红星, 刘静, 2011.东北地区近40年干燥指数变化趋势及其气候敏感性[J].地理研究, 30(10): 1765-1774.
文章导航

/