论文

近36年江淮地区浅层地温变化的多尺度分析

  • 刘恬 ,
  • 高晓清 ,
  • 杨丽薇 ,
  • 周亚
展开
  • <sup>1.</sup>中国科学院寒旱区陆面过程与气候变化重点实验室/中国科学院西北生态环境资源研究院, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049

收稿日期: 2019-02-08

  网络出版日期: 2020-04-28

基金资助

国家自然科学基金项目(91437108)

Multi-Scale Analysis of Shallow Soil Temperature Changes of Jianghuai Region in Recent 36 Years

  • Tian LIU ,
  • Xiaoqing GAO ,
  • Liwei YANG ,
  • Ya ZHOU
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>2.</sup>University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2019-02-08

  Online published: 2020-04-28

摘要

选取1981 -2016年中国江淮地区28个气象站的0~20 cm地温观测资料, 运用经验正交函数分解(EOF)和集合经验模态分解(EEMD)方法, 得到江淮地区0~20 cm地温及气温多时间尺度的振荡规律。结果表明: 江淮地区全区域有明显的空间一致性, 特征向量值在全地区均为负值, 时间系数在20世纪90年代中后期由正转负。1981 -2016年江淮地区浅层地温和气温均表现为波动上升的趋势, 其中0 cm地温的气候倾向率为0.65 ℃·(10a)-1, 增温幅度大于5~20 cm层地温及气温。0 cm、 5 cm、 10 cm、 20 cm四层地温及气温分解后的IMF1和IMF2分量的周期分别为准3年和准7年, 且80年代的振幅要小于之后的年份, 表明浅层地温及气温在80年代是稳定少变的, 进入90年代波动幅度增大。年际变化在江淮地区0~20 cm地温及气温的长期变化中占主导地位。对36年0~20 cm地温的气候平均值进行分解可得, 江淮地区各站点浅层地温的延伸期尺度周期基本分布在准12~16天和准26~33天两个周期内。

本文引用格式

刘恬 , 高晓清 , 杨丽薇 , 周亚 . 近36年江淮地区浅层地温变化的多尺度分析[J]. 高原气象, 2020 , 39(2) : 357 -366 . DOI: 10.7522/j.issn.1000-0534.2019.00038

Abstract

Based on shallow soil temperature series of 28 meteorological stations in Jianghuai region of China from 1981 to 2016, the Empirical Orthogonal Function (EOF) and Ensemble Empirical Mode Decomposition (EEMD) methods were used to analyze the oscillation rules of 0~20 cm soil temperature and air temperature on multiple time scales in Jianghuai region.The result shows that there is obvious spatial consistency in Jianghuai region, and the feature vector shows negative all over Jianghuai region.And the time coefficient changed from positive to negative in the middle and late 1990s.The interannual and decadal variation characteristics of the soil temperature in the range of 0~20 cm and air temperature and the variation characteristics of the soil temperature for the extended-range were analyzed by using EEMD.The results show that from 1980 to 2016, the shallow soil temperature and air temperature in Jianghuai region fluctuated and rose, in which the climate inclination rate of the 0 cm soil temperature was 0.65 ℃·(10a)-1, and the rise was greater than that of the air temperature and the 5~20 cm soil temperature.The cycles of the IMF1 and IMF2 components of the four-layer shallow soil temperature and air temperature after EEMD decomposition were quasi-3 and quasi-7-years, and the amplitude in the 1980s was smaller than that in the following years, it means that the shallow soil temperature and air temperature were stable and less variable in the 1980s, and the fluctuation amplitude increased in the 1990s.Interannual change is dominant in the long-term variation of air temperature and shallow soil temperature from 0 to 20 cm in Jianghuai region.The climatological normal of 0~20 cm soil temperature in 36 years was decomposed.The extension scale cycles of the shallow soil temperature of each station in Jianghuai region are basically distributed in two cycles of quasi-12 to 16 and quasi-26 to 33 days.

参考文献

[1]Anderson J R, Rosen R D, 1983.The latitude-height structure of 40-50 day variation in atmospheric angular momentum[J].Journal of Atmospheric Sciences, 40(6): 1584-1591.
[2]Charney J G, Eliassen A, 1964.On the growth of the hurricane depression[J].Journal of Atmospheric Sciences, (21): 68-75.
[3]Chen T C, Yen M C, 2000.Interaction between the summer monsoons in East Asia and the South China Sea: Intraseasonal monsoon modes[J].Journal of Atmospheric Sciences, 57 (9): 1373-1392.
[4]Huang N E, Shen Z, Long S R, al et, 1998.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A: Mathematical, Physical and Engineering Sciences, 454(1971): 903-995.
[5]Huang N E, Shen S P, 2005.Hibert-Huang transform and its applications[M].Singapore: World Scientific Publishing Co Pte Ltd, 56-62.
[6]Huang N E, Shen S P, 2008.A review on Hibert-Huang transform: Method and its applications to geophysical studies[J].Reviews of Geophysics, 46(2): 1-23.
[7]Madden R A, Julian P R, 1971.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].Journal of Atmospheric Sciences, 28(5): 702-708.
[8]Madden R A, Julian P R, 1972.Discription of global-scale circulation cells in the tropics with a 40-50 day period[J].Journal of Atmospheric Sciences, 29(6): 1109-1123.
[9]Mao J Y, Chan J C L, 2005.Intraseasonal variability of the South China Sea summer monsoon[J].Climate, 18: 2388-2402.
[10]Qian W H, Fu J L, 2010.Frontal genesis of moisture atmosphere during the early 2008 persistent freezing-rain event in southern China[J].Science China-Earth Sciences, 53(3): 454-464.
[11]Wallace J M, Blackmon M L, 1983.Observations of low-frequency atmospheric variability[C].Large-Scale Dynamical Processes in the Atmosphere: 1179-1196.
[12]Wang M Y, Lu D R, 2005.Diurnal and seasonal variation of clear-sky surface temperature of several representative land surface types in China retrieved by GMS-5[J].Acta Meteorologica Sinica, 63(6): 957-968.
[13]Woolnough S J, Vitart F, Balmaseda M A, 2007.The role of the ocean in the Madden-Julian Oscillation: Implications for MJO prediction[J].Quarterly Journal of the Royal Meteorological Society, 133(622): 117-128.
[14]Wylie D P, Hinton B B, 1982.The wind stress patterns over the Indian Ocean during the summer monsoon of 1979[J].Journal of Physical Oceanography, 12(2): 186-199.
[15]Zhang Y, Chen W J, Sharon L S, al et, 2005.Soil temperature in Canada during the twentieth century: Complex respinses to atmospheric climate change[J].Journal of Geophysical Research, 110: D03112, DOI: 10.1029/2004JD004910.
[16]毕硕本, 孙力, 李兴宇, 等, 2018.基于EEMD的1470 -1911年黄河中下游地区旱涝灾害多时间尺度特征分析[J].自然灾害学报, 27(1): 137-147.
[17]陈官军, 2014.中国南方夏季区域持续性强降水与大气季节内振荡[D].北京: 中国气象科学研究院, 1-99.
[18]陈丽臻, 张先恭, 陈隆勋, 1994.长江流域两个典型旱、 涝年大气30-60天低频波差异的初步分析[J].应用气象学报, 5(4): 483-488.
[19]丁一汇, 梁萍, 2010.基于MJO的延伸预报[J].气象, 36(7): 111-122.
[20]范新岗, 1993.长江中、 下游暴雨与下垫面加热场的关系[J].高原气象, 12(3): 322-327.
[21]桓玉, 李跃清, 2018.夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J].高原气象, 37(6): 1563-1577.DOI: 10.7522/j.issn.1000-0534.2018.00044.
[22]李崇银, 2000.气候动力学引论[M].北京: 气象出版社, 290-296.
[23]李天时, 汤懋苍, 1987.地温与汛期降水预报——一个全新的研究方向[J].地球科学信息, 4: 6-7.
[24]梁萍, 何金海, 穆海振, 2013.MJO在延伸期预报中的应用进展[J].气象科技进展, 3(1): 31-38.
[25]刘天虎, 刘天龙, 2015.集合经验模态分解下中国新疆降水变化趋势的区域特征[J].沙漠与绿洲气象, 9(4): 17-24.
[26]陆尔, 丁一汇, 1996.1991年江淮特大暴雨与东亚大气低频振荡[J].气象学报, 54(6): 730-736.
[27]罗德海, 李崇银, 1992.气候变化若干问题研究[M].北京: 科学出版社, 82-85.
[28]毛江玉, 吴国雄, 2005.1991年江淮梅雨与副热带高压的低频振荡[J].气象学报, 63(5): 762-770.
[29]施能, 1995.气象科研与预报中的多元分析方法[[M].北京: 气象出版社, 344.
[30]汤懋苍, 成青燕, 张东方, 等, 2008.地气图预测全国月降水的实践总结[J].高原气象, 27(5): 1054-1059.
[31]汤懋苍, 尹建华, 蔡洁萍, 1986.冬季地温分布与春、 夏降水相关的统计分析[J].高原气象, 5(1): 40-52.
[32]汤懋苍, 张建, 1994.季平均3.2m地温距平场在汛期预报中的应用[J].高原气象, 13(2): 178-187.
[33]王兵, 胡娅敏, 杜尧东, 等, 2014.小波分析和EEMD方法在广州气温及降水的多尺度分析中的差异分析[J].热带气象学报, 30(4): 769-776.
[34]王文, 任冉, 李耀辉, 2014.基于EEMD的黄河中上游夏季降水预报方法的研究[J].气象科学, 34(3): 261-266.
[35]王文, 许金萍, 蔡晓军, 等, 2017.2013年夏季长江中下游地区高温干旱的大气环流特征及成因分析[J].高原气象, 36(6): 1595-1607.DOI: 10.7522/j.issn.1000-0534.2016.00129.
[36]章基嘉, 彭永清, 王鼎良, 1984.青藏高原气象科学实验试验文集(Ⅰ)[M].北京: 科学出版社, 182-192.
[37]张鹏飞, 李国平, 尹建昌, 2009.青藏高原西部地表热通量输送的低频特征[J].高原气象, 28(3): 556-563.
[38]张英华, 李艳, 李德帅, 2017.东亚经向波列对中国中东部盛夏气温的影响[J].高原气象, 36(4): 1010-1021.DOI: 10.7522 / j.issn.1000-0534.2016.00080.
[39]周刊社, 陈华, 卓嘎, 2015.近43年西藏高原20cm地温对气温和降水变化的响应[J].中国农学通报, 31(35): 209-216.
文章导航

/