论文

一种基于高斯模糊的复杂地形下高分辨率三维插值方法的研究与试验应用

  • 陈康凯 ,
  • 宋林烨 ,
  • 杨璐 ,
  • 陈明轩 ,
  • 陈敏 ,
  • 韩雷 ,
  • 曹伟华
展开
  • <sup>1.</sup>中国海洋大学, 山东 青岛 266100;<sup>2.</sup>北京城市气象研究院, 北京 100089

收稿日期: 2019-09-23

  网络出版日期: 2020-04-28

基金资助

国家重点研发计划项目(2018YFF0300102);国家自然科学基金项目(41875049);北京市自然科学基金项目(8192016)

Research and Application of a Three-dimensional Interpolation Method for High-resolution Temperature in Complex Terrain based on Gaussian Fuzzy

  • Kangkai CHEN ,
  • Linye SONG ,
  • Lu YANG ,
  • Mingxuan CHEN ,
  • Min CHEN ,
  • Lei HAN ,
  • Weihua CAO
Expand
  • <sup>1.</sup>Ocean University of China, Qingdao 266100, Shandong, China;<sup>2.</sup>Beijing Institute of Urban Meteorology, Beijing 100089, China

Received date: 2019-09-23

  Online published: 2020-04-28

摘要

在对数值模式预报产品进行精细化释用处理中, 为考虑模式地形与实际地形之间的差异性, 本文提出了一种用于复杂地形下, 综合考虑模式地形与实际地形的精细化三维插值方法, 并将该方法应用于北京冬奥会重点区域的100 m高分辨率精细化温度产品释用中。算法先根据模式地形和实际地形的临界高度进行不同的三维插值, 然后使用高斯模糊算法对插值后的结果进行处理用于模式产品的释用。利用2019年2月4 -19日的地面自动站观测资料, 对比分析原始数值预报温度产品和经过插值得到的精细化释用产品, 定性分析结果表明: 高分辨率释用产品有效考虑了实际复杂地形的影响, 比原始数值预报产品更加精细化、 美观化。客观检验结果表明: 以自动站观测为实况, 经过本文插值方法得到的高分辨率地面温度场比原始数值模式温度场的均方根误差、 绝对误差和偏差均显著减小。因此, 本文提出的基于高斯模糊的复杂地形下高分辨率三维插值方法可以保证释用产品的美观性和精细化, 更重要的是也可以减小误差以提升产品的准确性。

本文引用格式

陈康凯 , 宋林烨 , 杨璐 , 陈明轩 , 陈敏 , 韩雷 , 曹伟华 . 一种基于高斯模糊的复杂地形下高分辨率三维插值方法的研究与试验应用[J]. 高原气象, 2020 , 39(2) : 367 -377 . DOI: 10.7522/j.issn.1000-0534.2019.00108

Abstract

In the release of numerical model forecasting products, there is a need to consider the difference between the model terrain and the actual terrain.This paper proposes a combined approach of three-dimensional interpolation and Gaussian fuzzy algorithm method to high-resolution temperature in areas with complex terrain.Specifically, the release of numerical model forecasting products is achieved by two processes: (1) A three-dimensional interpolation is first applied to obtain interpolated results of the model terrain and the actual terrain for a given critical height; (2) The interpolated results are then processed with the Gaussian fuzzy algorithm.The proposed method is applied to study 100 m high-resolution refined temperature product released in the key area of the Beijing Winter Olympics.By comparing the original numerical prediction outputs and the refined interpolated released products with observed temperature at the automatic weather station from 4 to 19 February 2019, it is found that the refined interpolated released products are better than the original numerical outputs as demonstrated by its refined aesthetics and a significant reduction in associated mean absolute error, root-mean-square error and BIAS between estimated and observed values in the high resolution temperature fields.Hence, the results demonstrate that the three-dimensional interpolation method based on Gaussian fuzzy proposed in this study can not only ensure the aesthetics and refinement of the released products, but more importantly, reduce the errors and improve the accuracy of the products.

参考文献

[1]Frei C, 2014.Interpolation of temperature in a mountainous region using nonlinear profiles and non‐Euclidean distances[J].International Journal of Climatology, 34(5): 1585-1605.DOI: 10. 1002/Joc.3786.
[2]Yao X, Fu B, Lu Y, al et, 2013.Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment[J].PLOS ONE, 8(1): e54660.DOI: 10.1371/journal.pone.0054660.
[3]Yu M, Miao S, Zhang H, al et, 2018.Uncertainties in the impact of urbanization on heavy rainfall: Case study of a rainfall event in Beijing on 7 August 2015[J].Journal of Geophysical Research: Atmospheres, 123(11): 6005-6021.DOI: 10.1029/2018JD028444.
[4]陈伟超, 陈华华, 2015.基于高频和中频信息的图像超分辨率重建[J].杭州电子科技大学学报(自然科学版), 35(1): 49-52.DOI: 10.13954/j.cnki.hdu.2015.01.010.
[5]程丛兰, 陈敏, 陈明轩, 等, 2019.临近预报的两种高时空分辨率定量降水预报融合算法的对比试验[J].气象学报, 77(4): 701-714.DOI: 10.11676/qxxb2019.017.
[6]范水勇, 王洪利, 陈敏, 等, 2013.雷达反射率资料的三维变分同化研究[J].气象学报, 71(3): 527-537.
[7]贾洋, 崔鹏, 2018.高山区多时间尺度Anusplin气温插值精度对比分析[J].高原气象, 37(3): 757-766. DOI: 10.7522/j.issn.1000-0534.2017.00072.
[8]李红金, 李鲲, 苏锋, 2013.直升机飞行气象要素的精细化数值预报[J].直升机技术, 176(3): 57-60.DOI: 10.3969/j.issn. 1673-1220.2013.03.013.
[9]李新, 程国栋, 卢玲, 等, 2000.空间内插方法比较[J].地球科学进展, 15(3): 260-265.
[10]李艳, 成培培, 路屹雄, 等, 2015.典型复杂地形风能预报的精细化研究[J].高原气象, 34(2): 413-425.DOI: 10.7522/j.issn. 1000-0534. 2013.00181.
[11]刘登伟, 封志明, 杨艳昭, 2006.海河流域降水空间插值方法的选取[J].地球信息科学学报, 8(4): 75-79, 83.
[12]刘琼, 张小平, 张志斌, 等, 2018.河西西部地区气候变化的时空特征分析[J].高原气象, 37(5): 1353-1363.DOI: 10.7522/j.issn. 1000-0534.2018.00031.
[13]刘田, 阳坤, 秦军, 等, 2018.青藏高原中、 东部气象站降水资料时间序列的构建与应用[J].高原气象, 37(6): 1449-1457.DOI: 10.7522/j.issn.1000-0534.2018.00060.
[14]刘郁珏, 苗世光, 胡非, 等, 2018.冬奥会小海坨山赛区边界层风场大涡模拟研究[J].高原气象, 37(5): 1388-1401.DOI: 10. 7522/j.issn.1000-0534.2018.00034.
[15]吕世华, 钱永甫, 1985.有地形数值模式中水平分辨率对预报质量的影响[J].高原气象, 4(1): 23-33.
[16]苗世光, 孙桂平, 马艳, 等, 2009.青岛奥帆赛高分辨率数值模式系统研制与应用[J].应用学报, 20(3): 370-379.
[17]闵晶晶, 2014.BJ-RUC系统模式地面气象要素预报效果评估[J].应用气象学报, 25(3): 265-273.DOI: 10.3969/j.issn.1001-7313.2014.03.002.
[18]穆启占, 2016.RMAPS-IN数值模式产品研发及其在气象服务中的应用[D].兰州: 兰州大学, 1-89.
[19]彭思岭, 2017.气象要素空间插值方法优化研究[J].地理空间信息, 95(7): 11, 86-89.
[20]漆梁波, 2015.高分辨率数值模式在强对流天气预警中的业务应用进展[J].气象, 41(6): 661-673.DOI: 10.7519/j.issn.1000-0526.2015.06.001.
[21]石汉青, 赵小峰, 关吉平, 2008.Kriging算法在气象数据空间插值中的应用分析[C]//中国气象学会年会卫星遥感应用技术与处理方法分会场.北京: 中国气象学会2008年会.
[22]宋亚男, 王秀兰, 冯仲科, 2014.区域气象要素的空间插值方法比较研究——以华北地区为例[J].山东林业科技, 44(6): 1-6.DOI: 10.3969/j.issn.1002-2724.2014.06.001.
[23]唐文苑, 郑永光, 张小雯, 2018.基于FSS的高分辨率模式华北对流预报能力评估[J].应用气象学报, 29(5): 513-523.DOI: 10. 11898/1001-7313.20180501.
[24]佟铃, 彭新东, 范广洲, 等, 2017.GRAPES全球模式的误差评估和订正[J].大气科学, 41(2): 333-344.DOI: 10.3878/j.issn. 1006-9895.1608.16115.
[25]王光辉, 陈峰峰, 沈学顺, 等, 2008.数值模式中地形滤波处理及水平扩散对降雨预报的影响[J].地球物理学报, 51(6): 1642-1650.
[26]王磊, 陈仁升, 宋耀选, 2017.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象, 36(6): 1546-1556.DOI: 10. 7522/j.issn.1000-0534.2017.00007.
[27]王思维, 刘勇, 朱超洪, 等, 2011.青海省逐日地面气温数据不同插值方法的对比[J].高原气象, 30(6): 1640-1646.
[28]王在文, 梁旭东, 范水勇, 等, 2016.数值模式降水评分对分辨率的敏感性初探[J].暴雨灾害, 35(1): 10-16.DOI: 10.3969/j.issn.1004-9045.2016.01.002.
[29]王智, 师庆东, 常顺利, 等, 2012.新疆地区平均气温空间插值方法研究[J].高原气象, 31(1): 201-208.
[30]熊敏诠, 2012.Delaunay三角剖分法在降水量插值中的应用[J].气象学报, 70(6): 1390-1400.DOI: 10.11676/qxxb2012.117.
[31]熊秋芬, 胡江林, 张耀存, 2007.梅雨锋暴雨数值模拟中地形的作用[J].气象科学, 27(6): 591-596.
[32]吴链, 2017.三维插值方法在湖南省气温精细化预报中的应用与检验[J].气象与减灾研究, 40(1): 30-35.DOI: 10.12013/qxyjzyj2017-005.
[33]杨阳, 王连仲, 周晓珊, 2017.东北区域业务模式预报产品检验评估系统的建立及应用[J].气象与环境学报, 33(4): 21-28.DOI: 10.3969/j.issn.1673-503X.2017.04.003.
[34]张红杰, 马清云, 吴焕萍, 等, 2009.气象降水分布图制作中的插值算法研究[J].气象, 35(11): 131-136.
[35]赵滨, 李子良, 张博, 等, 2016.三维插值方法在2m温度评估中的应用[J].南京信息工程大学学报: 自然科学版, 8(4): 343-355.
[36]赵凯, 孙燕, 张备, 等, 2008.T213数值预报产品在本地降水预报中的释用[J].气象科学, 28(2): 217-220.
文章导航

/