论文

荒漠河岸林胡杨光合参数变化特征及影响因子研究

  • 罗欢 ,
  • 司建华 ,
  • 赵春彦 ,
  • 李端 ,
  • 王春林
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院 内陆河流域生态水文重点实验室, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049

收稿日期: 2019-05-23

  网络出版日期: 2020-04-28

基金资助

国家重点研发计划项目(2016YFC0501009);内蒙古自治区科技重大专项

Study on the Variation Characteristics of Photosynthetic Parameters and Environmental Influencing Factors of Populus Euphratica in Desert Riparian Forest

  • Huan LUO ,
  • Jianhua SI ,
  • Chunyan ZHAO ,
  • Duan LI ,
  • Chunlin WANG
Expand
  • <sup>1.</sup>Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Key Laboratory of Eco-hydrology of Inland River Basin, Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-05-23

  Online published: 2020-04-28

摘要

光合作用是绿色植物形成初级生产力的基础, 在植物生长过程中起着非常重要的作用。光合作用能力的大小不仅与植物自身种类的差异有关, 而且外界环境对植物光合作用的影响也十分重要。本研究通过测量额济纳旗荒漠河岸林胡杨在自然条件下生长的光合生理参数、 气象环境因子, 并分析其变化特征及影响因素, 以期揭示胡杨光合作用的限制因素以及弄清干旱荒漠地区的抗旱机理。研究结果表明: (1)胡杨的净光合速率日变化呈先增加后降低趋势, 造成这种变化的主要原因是从早上开始净光合辐射逐渐增强, 光合速率也随之增加, 而到14:00(北京时, 下同)之后光合有效辐射和大气温度逐渐降低导致胡杨同化能力逐渐减弱; (2)6月、 7月和8月的11:00 -13:00均出现了明显的光合午休现象, 且同时气孔限制值在6月、 7月和8月都为先增加后降低的变化趋势, 导致胡杨光合午休的原因是气孔导度下降, 胞间CO2浓度降低, 属于光合作用的气孔限制; (3)胡杨的气孔导度呈周期性波动的变化规律, 其中6月和7月的波动周期大致为1 h, 8月的波动周期为2 h, 9月的波动周期为4 h; (4)胡杨的蒸腾速率与气孔导度相对应而呈同步的周期波动, 目的是有助于提高胡杨的水分利用效率, 使胡杨能够安全地度过极其炎热干燥的夏季。

本文引用格式

罗欢 , 司建华 , 赵春彦 , 李端 , 王春林 . 荒漠河岸林胡杨光合参数变化特征及影响因子研究[J]. 高原气象, 2020 , 39(2) : 393 -401 . DOI: 10.7522/j.issn.1000-0534.2019.00037

Abstract

Photosynthesis is the basis of primary productivity of green plants and plays an important role in plant growth.The net photosynthetic rate is not only related to the difference of plant species, but also the influence of external environment.In this study, photosynthetic physiological parameters and meteorological environmental factors of Populus euphratica in desert riparian forest of Ejina Banner were measured under the field conditions, and their variation characteristics and influencing factors were analyzed in order to reveal the limiting factors of photosynthesis of Populus euphratica and understand the drought resistance mechanism in arid desert areas.The results showed that: (1) The diurnal variation of net photosynthetic rate of Populus euphratica showed a trend of increasing first and then decreasing.The main reasons for this change was that net photosynthetic radiation increased gradually from the morning and photosynthetic rate increased accordingly.The decrease of photosynthetic rate after 14:00 (Beijing time, the same after) is due to the gradual decrease of photosynthetic active radiation and atmospheric temperature.(2) The midday depression of photosynthesis appeared between 11:00 and 13:00 in June, July and August, and the stomatal limitation value increased first and then decreased in June, July and August.The reason for the midday depression of photosynthesis in Populus euphratica is the decrease of stomatal conductance and intercellular CO2 concentration, which belongs to the stomatal limitation of photosynthesis.(3) The variation of stomatal conductance of Populus euphratica showed a periodic fluctuation pattern, in which the fluctuation period in June and July was approximately 1 hour, that in August was 2 hours, and that in September was 4 hours.(4) The transpiration rate of Populus euphratica corresponds to stomatal conductance and fluctuates periodically, its purpose is to help improve water use efficiency of Populus euphratica and to enable Populus euphratica to pass through the extremely hot and dry summer safely.

参考文献

[1]Arshad I, Wang T X, Wu G D, al et, 2017.Physiological and transcriptome analysis of heteromorphic leaves and hydrophilic roots in response to soil drying in desert <i>Populus euphratica</i>[J].Scientific Reports, 7(1): 12188.
[2]Anev S, Marinova A, Tzvetkova N P, al et, 2016.Stomatal control on photosynthesis in drought-treated subalpine pine saplings[J].Genetics and Plant Physiology, 6(1): 43-53.
[3]Berry J A, Downton W J S, 1982.Environmental regulation of photosynthesis[M].New York: Academic Press, 263-343.
[4]Bertamini M, Nedunchezhian N, 2003.Photoinhibition and recovery of photosystem in <i>Grapevine</i> (<i>Vitis vinifera</i> L.) leaves grown under field conditions[J].Photosynthetica, 41(4): 611-617.
[5]Chaumont M, Morotgaudry J F, Foyer C H, 1994.Seasonal and diurnal changes in photosynthesis and carbon partitioning in <i>Vitis vinifera</i> leaves in vines withand without fruit[J].Journal of Experimental Botany, 45(9): 1235-1243.
[6]Correia M J, Chaves M M C, Pereira J S, 1990.Afternoon depression in photosynthesis in <i>Grapevine</i> leaves—evidence for a high light stress effect[J].Journal of Experimental Botany, 41(4): 417-426.
[7]Farquhar G D, Sharkey T D, 1982.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology, 33(1): 317-345.
[8]Pathre U, Sinha A K, Shirke P A, al et, 1998.Factors determining the midday depression of photosynthesis in trees under monsoon climate[J].Trees, 12(8): 472-481.
[9]Singh M, Chaturvedi R, Sane P V, 1996.Diurnal and seasonal photosynthetic characteristics of <i>Populus deltoides Marsh</i>.leaves[J].Photosynthetica, 32(1): 11-21.
[10]Valdes A E, Centeno M L, Espinel S, al et, 2002.Could plant hormones be the basis of maturation indices in <i>Pinus radiata</i>?[J].Plant Physiology and Biochemistry, 40(3): 211-216.
[11]Xu Y, Ibrahim I M, Harvey P J, 2016.The influence of photoperiod and light intensity on the growth and photosynthesis of <i>Dunaliella salina </i>(<i>chlorophyta</i>) CCAP 19/30[J].Plant Physiology and Biochemistry, 106: 305-315.
[12]Yu D J, Kim S J, Lee H J, 2009.Stomatal and non-stomatal limitations to photosynthesis in field-grown <i>Grapevine</i> cultivars[J].Biologia Plantarum, 53(1): 133-137.
[13]Zhao C Y, Si J H, Feng Q, al et, 2017a.Physiological response to salinity stress and tolerance mechanics of <i>Populus euphratica</i>[J].Environmental Monitoring and Assessment, 189(11): 533.
[14]Zhao C Y, Si J H, Feng Q, al et, 2017b.Comparative study of daytime and nighttime sap flow of <i>Populus euphratica</i>[J].Plant Growth Regulation, 82(2): 353-362.
[15]常宗强, 冯起, 苏永红, 等, 2006.额济纳绿洲胡杨的光合特征及其对光强和CO<sub>2</sub>浓度的响应[J].干旱区地理, 29(4): 496-502.
[16]陈根云, 陈娟, 许大全, 2010.关于净光合速率和胞间CO<sub>2</sub>浓度关系的思考[J].植物生理学通讯, 46: 64-66.
[17]杜占池, 杨宗贵, 崔骁勇, 1999.草原植物光合生理生态研究[J].中国草地, (3): 20-27.
[18]付爱红, 陈亚宁, 李卫红, 等, 2004.新疆塔里木河下游不同地下水位的胡杨水势变化分析[J].干旱区地理, 27(2): 207-211.
[19]高冠龙, 冯起, 张小由, 等, 2018.黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J].高原气象, 37(1): 237-239.DOI: 10.7522/j.issn.1000-0534.2017.00017.
[20]高彦萍, 冯莹, 马志军, 等, 2007.水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究[J].干旱地区农业研究, 25(2): 77-79.
[21]冀宪领, 盖英萍, 牟志美, 等, 2004, 干旱胁迫对桑树生理生化特性的影响[J].蚕业科学, 30(2): 117-122.
[22]贾立, 王介民, 刘巍, 1994.黑河试验区春小麦田间的环境因子对蒸腾和光合作用的影响[J].高原气象, 13(3): 136-145.
[23]刘树宝, 陈亚宁, 李卫红, 等, 2014.黑河下游不同林龄胡杨水分来源的D、 <sup>18</sup>O同位素示踪[J].干旱区地理, 37(5): 988-995.
[24]倪惠菁, 臧德奎, 郭先锋, 等, 2016.不同季节不同品种切花红掌光合特性比较研究[J].中国农学通报, 32(31): 90-97.
[25]司建华, 常宗强, 苏永红, 等, 2008.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报, 28(1): 125-130.
[26]王海珍, 韩路, 李志军, 2009.胡杨、 灰叶胡杨蒸腾耗水规律初步研究[J].干旱区资源与环境, 23(8): 186-189.
[27]王利界, 周智彬, 常青, 等, 2018.盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响[J].生态学报, 38(19): 7026-7033.
[28]王孝威, 段艳红, 曹慧, 2003.水分胁迫对短枝型果树光合作用的非气孔限制[J].西北植物学报, 23(8): 1609-1613.
[29]王玉萍, 高会会, 刘悦善, 2013.高山植物光合机构耐受胁迫的适应机制[J].应用生态学报, 24(7): 2049-2055.
[30]王仲礼, 赵雪, 刘林德, 等, 2015.胡杨(<i>Populus euphratica</i>)和沙枣(<i>Elaeagnus angustifolia</i>)对荒漠环境的适应性比较[J].中国沙漠, 35(1): 160-166.
[31]乌日汗, 2005.额济纳胡杨光合和水分生理特性的研究[D].呼和浩特: 内蒙古农业大学, 1-27.
[32]吴芹, 张光灿, 裴斌, 等, 2013.不同土壤水分下山杏光合作用CO<sub>2</sub>响应过程及其模拟[J].应用生态学报, 24(6): 1517-1524.
[33]夏振华, 陈亚宁, 朱成刚, 等, 2018.干旱胁迫环境下的胡杨叶片气孔变化[J].干旱区研究, 35(5): 1111-1117.
[34]许大全, 1995.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学报, 31(4): 246-252.
[35]许大全, 1997.光合作用气孔限制分析中的一些问题[J].植物生理学通讯, 33(4): 241-244.
[36]杨泽粟, 张强, 郝小翠, 2015.自然条件下半干旱雨养春小麦生育后期旗叶光合的气孔和非气孔限制[J].中国生态农业学报, 23(2): 174-182.
[37]张经天, 席海洋, 王春林, 等, 2019.基于地下水位变化的荒漠河岸林蒸散估算[J].高原气象, 38(1): 179-186.DOI: 10.7522/j.issn.1000-0534.2018.00071.
[38]张新慧, 张恩和, 2008.当归叶片光合参数日变化及其与环境因子的关系[J].西北植物学报, 28(11): 2314-2319.
[39]张绪成, 于显枫, 马一凡, 2011.施氮和大气CO<sub>2</sub>浓度升高对小麦旗叶光合电子传递和分配的影响[J].应用生态学报, 22(3): 673-680.
[40]周洪华, 陈亚宁, 李卫红, 等, 2008.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠, 28(4): 665-672.
[41]庄丽, 陈亚宁, 李卫红, 等, 2005.干旱区荒漠植被丙二醛及保护酶活性对地下水位的响应[J].冰川冻土, 27(5): 723-733.
文章导航

/