作为一种清洁的可再生能源, 风电在过去几十年中取得了快速的发展, 目前中国风电装机容量居世界第一。虽然风机运行过程中不会造成污染或温室气体的直接排放, 但会改变风力发电场区域地表状况, 进而对大气形成潜在的扰动和影响。本研究利用大气数值模式WRF, 结合两种风轮机参数化方案(地表粗糙度增加参数化方案和风机曳力参数化方案), 探讨了中国北方大型风力发电场对大气要素(风速, 湍流和温度)的潜在扰动及影响。通过敏感性实验研究表明, 大型风力发电场会造成风电场内部和其临近区域风速的衰减, 且冬季(1月)的衰减程度明显强于夏季(7月)。另外由于风轮机产生的湍动动能增加了空气的垂直混合, 造成冬季(1月)风电场内部和下游地区在风轮机轮毂高度处和地表空气温度的上升, 且轮毂处升温强度略高于地面。在夏季(7月), 风轮机也导致在风电场临近区域地表和轮毂高度处的温度发生变化。考虑到风轮机在叶片转动区域产生大量的湍动动能, 推断地面和轮毂高度温度升高主要是由于湍流混合增强, 形成了湍流逆温效应。
As a clean and renewable energy source, wind power has made rapid development in the past few decades.Currently, China has the largest installed wind power capacity in the world.Although the turbine does not generate direct emission of pollution or greenhouse gas during the operation of the wind turbine, it could change the surface condition within the wind farms area and cause potential disturbance and impact on the atmosphere.In this study, using a weather research and foresting (WRF) model incorporating two wind farm parameterizations schemes (the increased aerodynamic roughness length scheme and the wind turbine drag force scheme), we assessed quantitatively the impact of large-scale wind farms in northern China on the meteorological conditions, including the wind speed, turbulence and air temperature in the North China Plain.The sensitivity numerical experiments were conducted by setting four model scenarios including and excluding wind farms.The results show a wind speed deficit within and around the large-scale wind farms.Such wind speed deficit is larger in winter (January) than that in summer (July).The increasing vertical turbulent mixing induced by wind turbines results in the increase of temperature at the hub-height and surface within and downstream of the wind farms in January.We found that the increase in air temperature at the hub-height is slightly larger than that near the surface.In July, there is the perturbation of air temperature at the hub-height and surface near the wind farms.Considering the increased turbulent kinetic energy (TKE) produced by the wind turbine blade rotation, we infer that the increase of temperature at the surface and hub-height is mainly caused by the turbulent inversion effect.
[1]Barrie D B, Kirk-Davidoff D B, 2010.Weather response to a large wind turbine array[J].Atmospheric Chemistry and Physics, 10(2): 769-775.DOI: 10.5194/acp-10-769-2010.
[2]Cervarich M C, Roy S B, Zhou L M, 2013.Spatiotemporal structure of wind farm-atmospheric boundary layer interactions[J].Energy Procedia, 40: 530-536.DOI: 10.1016/j.egypro.2013.08.061.
[3]Christiansen M B, Hasager C B, 2005.Wake effects of large offshore wind farms identified from satellite SAR[J].Remote Sensing of Environment, 98(2/3): 251-268.DOI: 10.1016/j.rse.2005. 07.009.
[4]Fiedler B H, Bukovsky M S, 2011.The effect of a giant wind farm on precipitation in a regional climate model[J].Environmental Research Letters, 6(4): 045101.DOI: 10.1088/1748-9326/6/4/045101.
[5]Fitch A C, Lundquist J K, Olson J B, 2013.Mesoscale influences of wind farms throughout a diurnal Cycle[J].Monthly Weather Review, 141(7): 2173-2198.DOI: 10.1175/Mwr-D-12-00185.1.
[6]Fitch A C, Olson J B, Lundquist J K, al et, 2012.Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model[J].Monthly Weather Review, 140(9): 3017-3038.DOI: 10.1175/Mwr-D-11-00352.1.
[7]Frandsen S, Barthelmie R, Pryor S, al et, 2006.Analytical modelling of wind speed deficit in large offshore wind farms[J].Wind Energy, 9(1/2): 39-53.DOI: 10.1002/we.189.
[8]Jimenez P A, Navarro J, Palomares A M, al et, 2015.Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with the weather research and forecasting model over Horns Rev[J].Wind Energy, 18(3): 559-566.DOI: 10.1002/we.1708.
[9]Keith D W, Decarolis J F, Denkenberger D C, al et, 2004.The influence of large-scale wind power on global climate[J].Proceedings of the National Academy of Sciences USA, 101(46): 16115-16120.DOI: 10.1073/pnas. 0406930101.
[10]Kirk-Davidoff D B, Keith D W, 2008.On the climate impact of surface roughness anomalies[J].Journal of the Atmospheric Sciences, 65(7): 2215-2234.DOI: 10.1175/2007jas2509.1.
[11]Lettau H, 1969.Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description[J].Journal of Applied Meteorology, 8(5): 828-832.DOI: 10.1175/1520-0450(1969)008<0828: Noarpe>2.0.Co;2.
[12]Li Y, Kalnay E, Motesharrei S, al et, 2018.Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J].Science, 361(6406): 1019-1022.DOI: 10.1126/science.aar5629.
[13]Mo J, Huang T, Zhang X, al et, 2017.Spatiotemporal distribution of nitrogen dioxide within and around a large-scale wind farm-a numerical case study[J].Atmospheric Chemistry and Physics, 17(23): 14239-14252.DOI: 10.5194/acp-17-14239-2017.
[14]Petersen R L, 1997.A wind tunnel evaluation of methods for estimating surface roughness length at industrial facilities[J].Atmospheric Environment, 31(1): 45-57.DOI: 10.1016/S1352-2310(96)00154-9.
[15]Porté-Agel F, Lu H, Wu Y T, 2014.Interaction between large wind farms and the atmospheric boundary layer[J].Procedia IUTAM, 10: 307-318.DOI: 10.1016/j.piutam.2014.01.026.
[16]Roy S B, 2004.Can large wind farms affect local meteorology?[J].Journal of Geophysical Research, 109(D19): 1-6.DOI: 10. 1029/2004jd004763.
[17]Roy S B, 2011.Simulating impacts of wind farms on local hydrometeorology[J].Journal of Wind Engineering and Industrial Aerodynamics, 99(4): 491-498.DOI: 10.1016/j.jweia.2010.12.013.
[18]Roy S B, Traiteur J J, 2010.Impacts of wind farms on surface air temperatures[J].Proceedings of the National Academy of Sciences, 107(42): 17899-17904.DOI: 10.1073/pnas.1000493107.
[19]Sun H W, Luo Y, Zhao Z C, al et, 2018.The impacts of Chinese wind farms on climate[J].Journal of Geophysical Research-Atmospheres, 123(10): 5177-5187.DOI: 10.1029/2017jd028028.
[20]Walsh-Thomas J M, Cervone G, Agouris P, al et, 2012.Further evidence of impacts of large-scale wind farms on land surface temperature[J].Renewable & Sustainable Energy Reviews, 16(8): 6432-6437.DOI: 10.1016/j.rser.2012.07.004.
[21]Wang C, Prinn R G, 2010.Potential climatic impacts and reliability of very large-scale wind farms[J].Atmospheric Chemistry and Physics, 10(4): 2053-2061.DOI: 10.5194/acp-10-2053-2010.
[22]Wieringa J, 1993.Representative roughness parameters for homogeneous terrain[J].Boundary-Layer Meteorology, 63(4): 323-363.DOI: 10.1007/Bf00705357.
[23]Xia G, Cervarich M C, Roy S B, al et, 2017.Simulating impacts of real-world wind farms on land surface temperature using the WRF Model: Validation with observations[J].Monthly Weather Review, 145(12): 4813-4836.DOI: 10.1175/Mwr-D-16-0401.1.
[24]Xia G, Zhou L M, Freedman J M, al et, 2016.A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign[J].Climate Dynamics, 46(7/8): 2179-2196.DOI: 10.1007/s00382-015-2696-9.
[25]Zhou L, Tian Y, Roy S B, al et, 2012.Impacts of wind farms on land surface temperature[J].Nature Climate Change, 2(7): 539-543. DOI: 10.1038/nclimate1505.
[26]胡菊, 2012.大型风电场建设对区域气候影响的数值模拟研究[D].兰州: 兰州大学, 1-47.
[27]李国庆, 李晓兵, 2016.风电场对环境的影响研究进展[J].地理科学进展, 35(8): 1017-1026.DOI: 10.18306/dlkxjz.2016. 08.011.
[28]李照荣, 达选芳, 王有生, 等, 2018.复杂地形条件下风电场预报风速的卡尔曼滤波订正[J].高原气象, 37(5): 263-273.DOI: 10.7522/j.issn.1000-0534.2018.00025.
[29]刘丽珺, 梁友嘉, 2018.集成CFD与Kalman滤波的微尺度风电场风功率预报方法[J].高原气象, 37(4): 1061-1073.DOI: 10. 7522/j.issn.1000-0534.2017.00098.
[30]盛斐轩, 毛节泰, 李建国, 等, 2003.大气物理学[M].北京: 北京大学出版社, 144-166.
[31]王奕丹, 胡泽勇, 孙根厚, 等, 2019.高原季风特征及其与东亚夏季风关系的研究[J].高原气象, 38(3): 518-527.DOI: 10.7522/j.issn.1000-0534.2019.00025.
[32]吴正人, 刘维维, 王松岭, 2014.风力发电对局地气候的潜在影响分析[J].中国电力, 47(6): 101-105.DOI: 10.3969/j.issn. 1004-9649.2014.06.020.
[33]张慧宁, 2010.风力发电机智能偏航控制系统研究[D].上海: 东华大学, 1-68.
[34]张双益, 胡非, 2017.大气边界层与风力发电的相互作用研究综述[J].高原气象, 36(4): 1127-1137.DOI: 10.7522/j.issn.1000-0534.2016.00095.
[35]赵宗慈, 罗勇, 江滢, 2011.风电场对气候变化影响研究进展[J].气候变化研究进展, 7(6): 400-406.DOI: 10.3969/j.issn. 1673-1719.2011.06.003.
[36]中国能源局, 2016.风电发展“十三五”规划[R].北京: 国家能源局, 1-24.