论文

青藏高原东缘峨眉山地区冬季地表能量交换特征研究

  • 吕钊 ,
  • 李茂善 ,
  • 刘啸然 ,
  • 阴蜀城 ,
  • 宋兴宇 ,
  • 伏薇 ,
  • 王灵芝 ,
  • 舒磊
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院/ 高原大气与环境四川省重点实验室/ 气候与环境变化联合实验室, 四川 成都 610225;<sup>2.</sup>内蒙古自治区气候中心, 内蒙古 呼和浩特 010000

收稿日期: 2019-06-17

  网络出版日期: 2020-06-28

基金资助

第二次青藏高原科学考察项目(2019QZKK0103);国家重点研发计划项目(2018YFC1505702);国家自然科学基金项目(41675106);成都信息工程大学科研基金项目(KYTZ201721)

Characteristics of Surface Energy Exchange in Emei Mountain Area on the Eastern Qinghai-Tibetan Plateau in Winter

  • Zhao Lü ,
  • Maoshan LI ,
  • Xiaoran LIU ,
  • Shucheng YIN ,
  • Xingyu SONG ,
  • Wei FU ,
  • Lingzhi WANG ,
  • Lei SHU
Expand
  • <sup>1.</sup>School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;<sup>2.</sup>Climate center of Inner Mongolia autonomous region, Hohhot 010000, Inner Mongolia, China

Received date: 2019-06-17

  Online published: 2020-06-28

摘要

利用青藏高原东缘峨眉山站2018年11月至2019年2月的观测数据, 分析了峨眉山地区近地层气象要素的变化特征, 并运用涡动相关法、 土壤温度预报校正法(TDEC)和最小二乘法等, 讨论了地表能量交换特征, 并与藏东南丹卡站和排龙站进行对比分析。结果表明: 在峨眉山地区冬季感热通量占主导。地表辐射各分量日变化均呈单峰结构, 短波辐射的峰值在峨眉山地区于13:00(北京时, 下同)左右出现, 而长波辐射到达峰值的时间段要晚于短波辐射, 在14:00左右出现。地表反照率月变化明显, 日变化呈“U”型, 即日出后和日落前较大, 日间较小的趋势, 但在日出后和日落前的值并不相等。峨眉山站冬季地表反照率均值为0.29。峨眉山区域地表能量不闭合现象十分显著, 日间和夜间的能量闭合程度差异很大。在考虑地表0~5 cm处的热量储存的条件下, 白天闭合程度最好为67.22%, 夜间闭合程度最差为65.09%。与藏东南丹卡站和排龙站对比分析表明: 丹卡、 排龙站地表辐射各分量达日峰值时间晚于峨眉山站。峨眉山站冬季的地表反照率高于丹卡、 排龙站, 月变化更加显著。峨眉山属于青藏高原东缘地区, 其地表能量闭合程度大于青藏高原上部分站点。

本文引用格式

吕钊 , 李茂善 , 刘啸然 , 阴蜀城 , 宋兴宇 , 伏薇 , 王灵芝 , 舒磊 . 青藏高原东缘峨眉山地区冬季地表能量交换特征研究[J]. 高原气象, 2020 , 39(3) : 445 -458 . DOI: 10.7522/j.issn.1000-0534.2019.00087.

Abstract

This study analyzed the annual variation characteristics of the meteorological elements of the near surface data in the Emei Mountain area, the eastern margin of Qinghai-Tibetan Plateau.Its surface energy exchange were discussed by using eddy covariance, temperature prediction-correction (TDEC) and ordinary least square method.Also we compared the results of Emei site with that of Danka and Pailong Station, which located in the southeastern Tibetan Plateau.Sensible heat flux is the dominator of the land surface energy balance at Emei Mountain area in winter.The each component of surface radiation have a single peak in its diurnal variation.The peak value of shortwave radiation in Emei Mountain area appears around at 13:00 (Beijing Time, the same as after), while the long wave radiation reaches its peak value at about 14:00, one hour later than that of shortwave radiation.The monthly variation of surface albedo is evident, and its diurnal variation appears to be "U" shape.The value after sunrise and before sunset has a constant variation, which is smaller than other times.The albedo values after sunrise are not equal to that before sunset.The monthly average of surface albedo is 0.29.The phenomenon of non-closure-energy in Emei Mountain area is very obvious, and the energy closure has a notable difference between day and night time.Taking into account of the heat storage in the 0~5 cm soil layer, the best closing degree for daytime is 67.22% and nighttime is 65.09%.Comparative analysis with Danka Station and Pailong Station in southeastern Tibet shows that: The daily peak value of surface radiation at Pailong and Danka Station is later than that that at Emei Mountain Station.The surface albedo of Emei Mountain Station is higher than that of Danka and Pailong Station.The monthly variation of albedo at Emei Station is more significant than other two Tibetan sites.Emei Mountain site locates on the eastern margin of the Qinghai-Tibetan Plateau.The surface energy is greater than some of the sites on Qinghai-Tibetan Plateau.

参考文献

[1]Chen L S, Xu X, Yu S, 1999.The second Tibetan Plateau field experiment: Air-land process and planetary boundary layer observational study[J].Annual Report of Chinese Academy of Meteorological Sciences, 15-16.
[2]Choudhury B J, Idso S B, Reginato R J, 1987.Analysis of an empiricalmodel for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[J].Agricultural and Forest Meteorology, 39: 283-297.DOI: 10.1016/0168-1923(87)90021-9.
[3]Culf A D, Foken T, Gash J H C, 2008.The energy balance closure problem[J].Ecological Applications, 18(6): 1351-1367.
[4]Foken T, Wichura B, 1996.Tools for quality assessment of surface-based flux measurements[J].Agricultural & Forest Meteorology, 78(1/2):83-105..DOI: 10.1016/0168-1923(95)02248-1.
[5]Foken T, Wimmer F, Mauder M, al et, 2006.Some aspects of the energy balance closure problem[J].Atmospheric Chemistry and Physics, 6 (12): 4395-4402.
[6]Gao Z, 2005.Determination of soil heat flux in a tibetan short-grass prairie[J].Boundary-Layer Meteorology, 114(1): 165-178.DOI: 10.1007/s10546-004-8661-5.
[7]Gu J, Smith E A, Merritt J D, 1999.Testing energy balance closure with GOES-retrieved net radiation and in measured eddy cor-relation fluxes in BOREAS[J].Journal of Geophysical Research, 104(D22): 27881-27893.DOI: 10.1029/1999jd900390.
[8]Li G P, Duan T Y, Gong Y F, 2000.The bulk transfer coefficients and surface fluxes on the western Tibetan Plateau[J].Chinese Science Bulletin, 45(13): 1221-1226.DOI: 10.1007/BF02886084.
[9]Heusinkveld B G, Jacobs A F, Holtslag A A M, al et, 2004.Surface energy balance closure in an arid region: Role of soil heat flux[J].Agricultural and Forest Meteorology, 122(1/2):21-37.DOI: 10. 1016/j.agrformet.2003.09.005.
[10]Horton R, Wierenga P, 1983.Estimating the soil heat flux from observa-tions of soil temperature near the surface[J].Soil Science Society of America Journal, 47 (1): 14-20.DOI: 10.2136/sssaj1983.03615995004700010003x.
[11]Jacobs A, Heusinkveld B, Holtslag A, 2008.Towards closing the surface energy budget of a mid-latitude grassland[J].Boundary-Layer Meteorology, 126 (1): 125-136.DOI: 10.1007/s10546-007-9209-2.
[12]Liebethal C, Huwe B, Foken T, 2005.Sensitivity analysis for two ground heat flux calculation approaches[J].Agricultural and Forest Me-teorology, 132: 253-262.DOI: 10.1016/j.agrformet. 2005.08.001.
[13]Ma Y, Kang S, Zhu L, al et, 2008.Roof of the World: Tibetan observation and research platform[J].Bulletin of the American Meteorological Society, 89(10): 1487.
[14]Mahrt L, 1998.Flux sampling errors for aircraft and towers[J].Journal of Atmospheric and Oceanic Technology, 15: 416-429.
[15]Mauder M, Foken T, 2012.Documentation and instruction manual of the eddy-covariance software package TK3.http: //.
[16]Mayocchi C L, Bristow K L, 1995.Soil surface heat flux: Some general questions and comments on measurements[J].Agricultural and Forest Meteorology, 75: 43-50.DOI: 10.1016/0168-1923(94)02198-S.
[17]McMillen R T, 1988.An eddy correlation technique with extended applicability to non-simple terrain[J].Boundary-Layer Meteorology, 43: 231-245.DOI: 10.1007/bf00128405.
[18]Moore C J, Fisch G, 1986.Estimating heat storage in Amazonian tropical forest[J].Agricultural and Forest Meteorology, 38: 147-169.DOI: 10.1016/0168-1923(86)90055-9.
[19]Oncley S, Foken T, Vogt R, al et, 2007.The energy balance experimentEBEX-2000.Part I: Overview and energy balance[J].Boundary-Layer Meteorology, 123 (1): 1-28.DOI: 10.1007/s10546-007-9161-1.
[20]Paw UK T, Baldocchi D D, al et, 1997.Corrections of eddy covariance measurements incorporating both advective effects and density fluxes[J].Boundary-Layer Meteorology, 97(3): 487-511.DOI: 10.1023/a: 1002786702909.
[21]Qian Y F, Zhang Y, Huang Y Y, al et, 2004.The effects of the thermal anomalies over the Tibetan Plateau and its vicinities on climate variability in China[J].Advances in Atmospheric Sciences, 21(3): 369-381.DOI: 10.1007/bf02915565.
[22]Seneviratne S I, Corti T, Davin E L, al et, 2010.Investigating soil moisture-climate interactions in a changing climate: A review[J].Earth-Science Reviews, 99 (3/4): 125-161.DOI: 10.1016/j.earscirev.2010.02.004.
[23]Tanaka K, Ishikawa H, Hayashi T, al et, 2001.Surface energy budget at Amdo on the Tibetan plateau using GAME/Tibet IOP98 data[J].Journal of the Meteorological Society of Japan, 79 (1B): 505-517.
[24]VanLoon W KP, Bastings HMH, Moors E J, 1998.Calibration of soil heat fluxsensors[J].Agricultural and Forest Meteorology, 92: 1-8.DOI: 10.1016/s0168-1923(98)00090-2.
[25]Williams C A, Reichstein M, Buchmann N, al et, 2012.Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers[J].Water Resources Research, 48(6): W06523.DOI: 10.1029/2011wr011586.
[26]Wilson K, Goldstein A, Falge E, al et, 2002.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology, 113: 223-243.
[27]Wu G, Zhang Y, 1998.Tibetan Plateau Forcing and the timing of the monsoon onset over South Asia and the South China Sea[J].Monthly Weather Review, 126(4): 913-927.DOI: 10.1175/1520-0493(1998)126<0913: TPFATT>2.0.CO; 2.
[28]Yang K, Koike T, Ishikawa H, al et, 2008.Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J].Journal of Applied Meteorology & Climatology, 47(1): 276-290.DOI: 10.1175/2007JAMC1547.1.
[29]Yang K, Koike T, Yang D, 2003.Surface flux parameterization in the Tibetan Plateau[J].Boundary-Layer Meteorology, 106(2): 245-262.DOI: 10.1023/a: 1021152407334.
[30]Zhang Q, Li H, 2010.The relationship between surface energy balance unclosure and vertical sensible heat advection over the loess plateau[J].Acta Physica Sinica, 59(8): 5888-5895.DOI: 10.1393/ncb/i2010-10909-0.
[31]曹寰琦, 何清, 金莉莉, 等, 2018.塔克拉玛干沙漠北缘夏秋冬季地表能量平衡闭合特征[J].干旱区研究, 35(4): 830-839.DOI: 10. 13866/j.azr.2018.04.10.
[32]陈丽晶, 张镭, 梁捷宁, 等, 2017.半干旱区不同下垫面大气湍流通量比较分析[J].高原气象, 36(5): 1325-1335.DOI: 10. 7522/j.issn.1000-0534.2016.00101.
[33]冯璐, 仲雷, 马耀明, 等, 2016.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象, 35(2): 297-308.DOI: 10.7522/j.issn.1000-0534.2015.00006.
[34]胡隐樵, 1994.黑河实验(HEIFE)能量平衡和水汽输送研究进展[J].地球科学进展, 9( 4): 30-34.
[35]丁一汇, 1997.地表通量的计算问题[J].应用气象学报(S1: 29-35.
[36]胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象, 37( 6): 1499-1510.DOI: 10.7522/j.issn.000-0534.2018.00045.
[37]季国良, 江灏, 吕兰芝, 1995.青藏高原的长波辐射特征[J].高原气象, 14(4): 451-458.
[38]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[39]李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象, 25(5): 807-813.
[40]李泉, 张宪洲, 石培礼, 等, 2008.西藏高原高寒草甸能量平衡闭合研究[J].自然资源学报, 23(3): 391-399.DOI: 10.3321/j.issn:1000-3037.2008.03.005.
[41]李韧, 赵林, 丁永建, 等, 2007.青藏高原北部五道梁地表热量平衡方程中各分量特征[J].山地学报, 25(6): 664-670.DOI: 10. 3969/j.issn.1008-2786.2007.06.004.
[42]李英, 胡泽勇, 2006.藏北高原地表反照率的初步研究[J].高原气象, 25(6): 1034-1041.
[43]马耀明, 塚本修, 吴晓鸣, 等, 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 24(5): 715-722.DOI: 10.1007/s10011-000-0335-3.
[44]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[45]沈艳, 刘允芬, 王堰, 2005.应用涡动相关法计算水热、 CO<sub>2</sub>通量的国内外进展概况[J].南京气象学院学报, 28(4): 559-566.
[46]孙成, 江洪, 陈健, 等, 2015.亚热带毛竹林生态系统能量通量及平衡分析[J].生态学报, 35(12): 4128-4136.DOI: 10.5846/stxb201308272161.
[47]陶诗言, 陈联寿, 徐祥德, 等, 1999.第二次青藏高原大气科学试验理论研究进展 (一) [M].北京: 气象出版社.
[48]陶诗言, 罗四维, 张鸿材, 1984.1979年5 -8月青藏高原气象科学实验及其观测系统[J].气象, 10(7): 4-7.DOI: 10.7519/j.issn.1000-0526.1984.7.001.
[49]王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象, 18(3): 280-294.
[50]王介民, 王维真, 刘绍民, 等, 2009.近地层能量平衡闭合问题——综述及个例分析[J].地球科学进展, 24(7): 705-713.DOI: http: //ir.casnw.net/handle/362004/11932.
[51]吴家兵, 关德新, 张弥, 等, 2005.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例[J].生态学杂志, 24(10): 1245-1249.
[52]徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、 热力结构综合物理图象[J].中国科学 (D辑), 31 (5): 428-440.DOI: 10.3321/j.issn: 1006-9267.2001.05.011.
[53]徐自为, 刘绍民, 宫丽娟, 等, 2008.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 23(4): 357-370.DOI: 10.3321/j.issn: 1001-8166.2008.04.005.
[54]徐自为, 刘绍民, 徐同仁, 等, 2013.不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J].地球科学进展, 28(8): 875-889.
[55]阳坤, 王介民, 2008.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学: 地球科学, (2): 243-250.DOI: 10.3724/SP.J.1005.2008.01083.
[56]杨丽薇, 高晓清, 惠小英, 等, 2017.青藏高原中部聂荣半干旱草地夏季近地层能量平衡与输送分析[J].气候与环境研究, 22(3): 335-345.DOI: 10.3878/j.issn.1006-9585.2016.16136.
[57]章基嘉, 朱抱真, 朱福康, 等, 1988.青藏高原气象学进展[M].北京: 科学出版社.
[58]仲雷, 马耀明, 李茂善, 2007.珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J].大气科学, 31(1): 48-56.
[59]朱德琴, 陈文, 刘辉志, 等, 2006.我国西北典型干旱区和高原地区地表辐射能量收支特征的比较[J].气候与环境研究, 11(6): 683-690.DOI: 10.3969/j.issn.1006-9585.2006.06.002.
[60]庄金鑫, 王维真, 王介民, 2013.涡动相关通量计算及三种主要软件的比较分析[J].高原气象, 32(1): 78-87.DOI: 10.7522/j.issn.1000-0534.2012.00009.
文章导航

/