使用Noah-MP陆面模式, 在GLDAS数据的驱动下, 对青藏高原不同区域6个观测站点的感热通量和潜热通量进行了模拟, 并与实测值进行了对比分析。研究结果表明: 使用默认参数化方案选项模拟的感热通量除在珠峰站冬春季偏高而夏秋季偏低以外, 在其他站点均偏高; 潜热通量的模拟在不同站点和不同季节存在较大差异, 在藏东南站模拟结果较好, 在珠峰站偏高, 在慕士塔格站偏低, 在纳木错站秋冬季偏低、 在阿里站春季偏高、 在那曲站夏季偏低。通过进一步分析模拟结果对各个参数化方案选项的敏感性, 选出了更适合各站点感热通量及潜热通量模拟的参数化方案选项组合, 提高了模式对各个站点全年整体模拟水平, 使得模拟结果和站点观测相比具有更小的均方根误差和更高相关系数, 但对一些站点部分季节的模拟可能会带来更大的误差。本研究为这些站点的陆面及耦合模式的模拟提供了参考, 同时也能对青藏高原热源变化的模拟提供更准确的地气交换信息。
Driven by GLDAS forcing data, the Noah-MP land surface model is used to evaluate its performance in simulating sensible and latent heat flux at six observation stations (Qomolangma Atmospheric and Environmental Observation and Research Station, QOMS; Nam Co Monitoring and Research Station for Multisphere Interactions, NAMOR; Ngari Desert Observation and Research Station, NASDE; Southeast Tibet Observation and Research Station for the Alpine Environment, SETS; Muztagh Ata Westerly Observation and Research Station, MASWE; Nagqu Station of Plateau Climate and Environment, NPCE) of different regions over Qinghai-Tibetan Plateau.The results with default multiple parameterization options indicate that comparing with the observations, the sensible heat flux is overestimated at most stations and in QOMS’s winter and spring, but underestimated in summer and autumn at this site.The latent heat flux is distinct in different stations and seasons: With better result at SETS, overestimated at QOMS and in NASDE’s spring, underestimated at MASWE, in NAMOR’s autumn and winter and NPCE’s summer.By analyzing the sensitivity of simulation results with different multiple parameterization options to select better combinations of these options which are more suitable for each station.New combinations give better root mean square error and correlation coefficient to simulations at a whole year level, but specific seasons at some stations have larger errors.This method provides accurate information of energy exchange and a reference for land surface and coupling models to the simulate heat source at these sites.
[1]Chen F, Manning K W, Lemone M A, al et, 2007.Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system [J].Journal of Applied Meteorology and Climatology, 46: 694-713.
[2]Chen F, Mitchell K, Schaake J, al et, 1996.Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J].Journal of Geophysical Research: Atmospheres, 101: 7251-7268.
[3]Chen Y Y, Yang K, He J, al et, 2011.Improving land surface temperature modeling for dry land of China [J].Journal of Geophysical Research: Atmospheres, 116: D20104.
[4]Ek M B, Mitchell K E, Lin Y, al et, 2003.Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model [J].Journal of Geophysical Research: Atmospheres, 108: D228851.
[5]Gao Y H, Li K, Chen F, al et, 2015.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau [J].Journal of Geophysical Research: Atmospheres, 120: 9258-9278.
[6]Koster R D, Dirmeyer P A, Guo Z C, al et, 2004.Regions of strong coupling between soil moisture and precipitation [J].Science, 305: 1138-1140.
[7]Ma Y M, Kang S C, Zhu L P, al et, 2008.Tibetan observation and research platform atmosphere-land interaction over a heterogeneous landscape [J].Bulletin of the American Meteorological Society, 89: 1487-1492.
[8]Niu G Y, Yang Z L, Mitchell K E, al et, 2011.The community Noah land surface model with multi-parameterization options (Noah-MP): 1.Model description and evaluation with local-scale measurements [J].Journal of Geophysical Research: Atmospheres, 116: D12109.
[9]Pitman A J, 2003.The evolution of, and revolution in, land surface schemes designed for climate models [J].International Journal of Climatology, 23: 479-510.
[10]Wu G X, Liu Y M, He B, al et, 2012.Thermal controls on the Asian summer monsoon [J].Scientific Reports, 2: 404.
[11]Yang K, Chen Y Y, Qin J, 2009.Some practical notes on the land surface modeling in the Tibetan Plateau [J].Hydrology and Earth System Sciences, 13: 687-701.
[12]Yang K, Koike T, Ishikawa H, al et, 2008.Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization [J].Journal of Applied Meteorology and Climatology, 47: 276-290.
[13]Yang Z L, Niu G Y, Mitchell K E, al et, 2011.The community Noah land surface model with multiparameterization options (Noah-MP): 2.Evaluation over global river basins [J].Journal of Geophysical Research: Atmospheres, 116: D12110.
[14]Zhang G, Chen F, Gan Y J, 2016.Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International cooperation program field campaign [J].Journal of Geophysical Research: Atmospheres, 121: 9576-9596.
[15]陈学龙, 马耀明, 李茂善, 等, 2008.藏北地区近地层大气和土壤特征量分析 [J].高原气象, 27(5): 941-948.
[16]戴永久, 曾庆存, 1996.陆面过程研究 [J].水科学进展, 7(增刊): 40-53.
[17]林朝晖, 刘辉志, 谢正辉, 等, 2008.陆面水文过程研究进展 [J].大气科学, 32(4): 935-949.
[18]李崇银, 2002.气候动力学 [M].北京: 气象出版社, 311-337.
[19]李宏毅, 肖子牛, 朱玉祥, 2018.藏东南草地下垫面地气通量交换日变化的数值模拟 [J].高原气象, 37( 2): 443-454.DOI: 10.7522/j.issn.1000-0534.2017.00052.
[20]刘新, 吴国雄, 刘屹岷, 等, 2002.青藏高原加热与亚洲环流季节变化和夏季风爆发 [J].大气科学, 26(6): 781-793.
[21]马伟强, 马耀明, 李茂善, 等, 2005.藏北高原地区地表辐射出支和能量平衡的季节变化 [J].冰川冻土, 27(5): 673-679.
[22]马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展 [J].高原气象, 25(2): 344-351.
[23]牛国跃, 洪钟祥, 孙菽芬, 1997.陆面过程研究的现状与发展趋势 [J].地球科学进展, 12(1): 21-26.
[24]孙菽芬, 2002.陆面过程研究的进展 [J].新疆气象, 25(6): 1-6.
[25]王介民, 邱华盛, 2000.中日合作亚洲季风实验——青藏高原实验(GAME-Tibet) [J].中国科学院院刊(5): 386-388.
[26]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10.7522 /j.issn.1000-0534.2017.00019.
[27]谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估 [J].高原气象, 36(1): 1-12.DOI: 10.7522 /j.issn.1000-0534.2016.00012.
[28]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展 [J].应用气象学报, 17(6): 756-772.
[29]薛根元, 周锁铨, 孙照渤, 等, 2005.陆面过程研究的新进展 [J].科技通报, 21(4): 378-385.
[30]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比 [J].高原气象, 37(2): 358-370.DOI: 10. 7522 /j.issn.1000-0534.2017.00067.
[31]叶笃正, 张捷迁, 1974.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验 [J].中国科学, 4(3): 301-320.
[32]张人禾, 徐祥德, 2012.青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目 [J].中国工程科学, 14(9): 102-112.
[33]张永生, 吴国雄, 1999.关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断分析: Ⅱ青藏高原及邻近地区地表感热加热的作用 [J].气象学报, 57(1): 57-74.