论文

基于GLDAS与再分析资料的青藏高原内循环降水率分析

  • 续昱 ,
  • 高艳红
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;<sup>2.</sup>中国科学院大学, 北京 100049;<sup>3.</sup>复旦大学 大气与海洋科学系/大气科学研究院, 上海 200438

收稿日期: 2019-11-28

  网络出版日期: 2020-06-28

基金资助

中国科学院战略性先导科技专项(XDA2006010202);第二次青藏高原科考项目(2019QZKK010314);国家自然科学基金项目(91537211)

Analysis of Precipitation Recycling Ratio Based on GLDAS and Reanalysis Data over the Qinghai-Tibetan Plateau

  • Yu XU ,
  • Yanhong GAO
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>3.</sup>Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences Fudan University, Shanghai 200438, China

Received date: 2019-11-28

  Online published: 2020-06-28

摘要

内循环降水率是本地蒸发产生的降水与总降水量的比值, 可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory, QIBT), 基于全球陆面数据同化产品(Global Land Data Assimilation Systems, GLDAS)的降水和蒸发数据, 以及ERA-Interim再分析资料(ERAI), 选取降水量与气候平均态相当的2001年, 研究了青藏高原内循环降水率。其次, 使用2001年ERAI降水和蒸发数据替换GLDAS数据, 分析地表数据不确定性对内循环降水率的影响, 最后, 选取30年降水和蒸发量的极端情况, 探讨了极端干湿年对内循环降水率的影响。结果表明, 青藏高原内循环降水率东南部小于西北部, 年平均内循环降水率为0.42。极端干年大于2001年, 极端湿年小于2001年。使用再分析资料的降水和蒸发数据后, 内循环降水率减小为0.28, 与再分析资料对青藏高原降水量的高估有关。

本文引用格式

续昱 , 高艳红 . 基于GLDAS与再分析资料的青藏高原内循环降水率分析[J]. 高原气象, 2020 , 39(3) : 499 -510 . DOI: 10.7522/j.issn.1000-0534.2020.00013.

Abstract

Precipitation recycling ratio is the local evaporation that contributes to the local precipitation.It is an indication of land-atmosphere interaction over the Qinghai-Tibetan Plateau (QTP).This study was based on the Global Land Data Assimilation Systems (GLDAS) and the ERA-Interim (ERAI) data by using the Quasi-isentropic backward trajectory (QIBT) model.The study used the precipitation and evaporation from the GLDAS and other variables from the ERAI data to run the QIBT model.The precipitation recycling ratio was analyzed in 2001, a climatological averaged precipitation year.To evaluate the influence of the precipitation and evaporation to the results of precipitation recycling ratio, two tests were applied.One is to replace the precipitation and evaporation from the GLDAS with that from the ERAI.After the precipitation and evaporation in the GLDAS were replaced with that in the ERAI, the influence of the replacement was evaluated.Another is to replace the precipitation and evaporation in 2001 with that in extreme wet and dry years during 1982 -2011 (30 years).The variations of precipitation recycling ratio in extreme wet and dry year were also evaluated.The results are as follows: Precipitation recycling ratio in the northwest is stronger than that in the southeast over the QTP.The average precipitation recycling ratio is 0.42 over the QTP with the precipitation and evaporation from the GLDAS.Precipitation recycling ratio in some regions in the northern part of the QTP is larger than 0.50.Precipitation recycling ratio is 0.28 when the precipitation and evaporation in the GLDAS were replaced with the precipitation and evaporation in the ERAI.Precipitation recycling ratio is 0.31 for extreme dry year and 0.25 for extreme wet year.Precipitation recycling ratio is stronger in the extreme dry year than in the extreme wet year.The influence of replacement from GLDAS to ERAI is larger than that of replacement from normal year to extreme years.The higher precipitation in the ERAI than the GLDAS is the reason for the lower precipitation recycling ratio for the ERAI.Apparently, precipitation overestimation is responsible for the underestimation of precipitation recycling ratio in the ERAI.The deeply reason is that hourly precipitation in the ERAI is different from that in the GLDAS.ERAI underestimates the small and medium rainfall events, and overestimates the heavy rainfall events at the same time.In conclusion, the accuracy of precipitation is the most important factor in the study of the precipitation recycling ratio over the Tibetan Plateau.

参考文献

[1]Brubaker K L, Dirmeyer P A, Sudradjat A, al et, 2001.A 36-yr climatological description of the evaporative sources of warm-season precipitation in the mississippi river basin[J].Journal of Hydrometeorology, 2: 537-557.
[2]Brubaker K L, Entekhabi D, Eagleson P, 1993.Estimation of continental precipitation recycling[J].Journal of Climate, 6: 1077-1089.
[3]Budyko M, 1974.Climate and life[M].New York: Academic Press, 508.
[4]Budyko M, Drozdov O, 1953.Characteristics of the moisture circulation in the atmosphere[J].Izvestiya Akademii Nauk Sssr, Seriya Geologicheskaya, 4: 5-14.
[5]Burde G, Zangvil A, 2001.The estimation of regional precipitation recycling.Part i: Review of recycling models[J].Journal of Climate, 14: 2497-2508.
[6]Burde G I, 2006.Bulk recycling models with incomplete vertical mixing.Part i: Conceptual framework and models[J].Journal of Climate, 19: 1461-1472.
[7]Curio J, Maussion F, Scherer D, 2015.A 12-year high-resolution climatology of atmospheric water transport over the tibetan plateau[J].Earth System Dynamics, 6: 109-124.
[8]Chen B, Xu X D, Yang S, al et, 2012.On the origin and destination of atmospheric moisture and air mass over the tibetan plateau[J].Theoretical and Applied Climatology, 110: 423-435.
[9]Dee D P, Uppala S, 2009.Variational bias correction of satellite radiance data in the era-interim reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 135: 1830-1841.
[10]Dee D P, Uppala S, Simmons A, al et, 2011.The era-interim reanalysis: Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137: 553–597.
[11]Dirmeyer P A, Brubaker K L, 2007.Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J].Journal of Hydrometeorology, 8: 20-37.
[12]Dirmeyer P A, Brubaker K L, 1999.Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993[J].Journal of Geophysical Research: Atmospheres, 104: 19383-19397.
[13]Dominguez F, Kumar P, Liang X Z, al et, 2006.Impact of atmospheric moisture storage on precipitation recycling[J].Journal of Climate, 19: 1513-1530.
[14]Eltahir E A, Bras R L, 1996.Precipitation recycling[J].Reviews of Geophysics, 34: 367-378.
[15]Farr T G, Rosen P A, Caro E, al et, 2007.The shuttle radar topography mission[J].Reviews of Geophysics, 45, RG2004.
[16]Gao Y, Cuo L, Zhang Y, 2014.Changes in moisture flux over the tibetan plateau during 1979 -2011 and possible mechanisms[J].Journal of Climate, 27: 1876-1893.
[17]Guo Y, Wang C, 2014.Trends in precipitation recycling over the qinghai-xizang plateau in last decades[J].Journal of Hydrology, 517: 826-835.
[18]Harding K J, Snyder P K, 2012.Modeling the atmospheric response to irrigation in the great plains.Part ii: The precipitation of irrigated water and changes in precipitation recycling[J].Journal of Hydrometeorology, 13: 1687-1703.
[19]Hua L, Zhong L, Ke Z, 2016.Precipitation recycling and soil-precipitation interaction across the arid and semi‐arid regions of China[J].International Journal of Climatology, 36: 3708-3722.
[20]Kurita N, Yamada H, 2008.The role of local moisture recycling evaluated using stable isotope data from over the middle of the tibetan plateau during the monsoon season[J].Journal of Hydrometeorology, 9: 760-775.
[21]McDonald J E, 1962.The evaporation‐precipitation fallacy[J].Weather, 17: 168-177.
[22]Merrill J T, Bleck R, Boudra D, 1986.Techniques of lagrangian trajectory analysis in isentropic coordinates[J].Monthly Weather Review, 114: 571-581.
[23]Petterssen S, 1940.Weather analysis and forecasting[M].New York, NY, USA: McGraw-Hill Book Company, 221-223.
[24]Rodell M, Houser P R, Jambor U, al et, 2004.The global land data assimilation system[J].Bulletin of the American Meteorological Society, 85: 381-394.
[25]Salati E, Dall'Olio A, Matsui E, al et, 1979.Recycling of water in the amazon basin: An isotopic study[J].Water Resources Research, 15: 1250-1258.
[26]Stohl A, Forster C, Frank A, al et, 2005.The lagrangian particle dispersion model flexpart version 6.2[J].Atmospheric Chemistry and Physics, 5: 2461-2474.
[27]Tian L, Yao T, MacClune K, al et, 2007.Stable isotopic variations in west china: A consideration of moisture sources[J].Journal of Geophysical Research: Atmospheres, 112:D10112.
[28]Trenberth K E, 1998.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J].Climatic Change, 39: 667-694.
[29]Tuinenburg O, Hutjes R, Kabat P, 2012.The fate of evaporated water from the ganges basin[J].Journal of Geophysical Research: Atmospheres, 117:D01107.
[30]Van der Ent R J, Savenije H H, Schaefli B, al et, 2010.Origin and fate of atmospheric moisture over continents[J].Water Resources Research, 46(9): W09525.
[31]Van der Ent R V, Tuinenburg O A, Knoche H R, al et, 2013.Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking[J].Hydrology and Earth System Sciences Discussions, 17: 4869-4884.
[32]Wei J F, Dirmeyer P A, Bosilovich M G, al et, 2012.Water vapor sources for yangtze river valley rainfall: Climatology, variability, and implications for rainfall forecasting[J].Journal of Geophysical Research:Atmospheres, 117, D05126.
[33]Xu Y, Gao Y, 2019.Quantification of evaporative sources of precipitation and its changes in the southeastern tibetan plateau and middle yangtze river basin[J].Atmosphere, 10: 428.
[34]Yao T, Thompson L, Yang W, al et, 2012.Different glacier status with atmospheric circulations in tibetan plateau and surroundings[J].Nature Climate Change, 2: 663-667.
[35]Zhang C, Tang Q, Chen D, 2017.Recent changes in the moisture source of precipitation over the tibetan plateau[J].Journal of Climate, 30: 1807-1819.
[36]Zhang C, Tang Q, Chen D, al et, 2019.Moisture source changes contributed to different precipitation changes over the northern and southern tibetan plateau[J].Journal of Hydrometeorology, 20(2): 217-229.
[37]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[38]陈丹, 周长艳, 齐冬梅, 2019.夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J].高原气象, 38(6): 1149-1157.DOI: 10.7522/j.issn.1000-0534.2019.00041.
[39]康红文, 谷湘潜, 付翔, 等, 2005.我国北方地区降水再循环率的初步评估[J].应用气象学报, 16(2): 139-147.
[40]李若麟, 2017.北半球干旱区降水转化和再循环特征及其在全球变暖背景下的变化[D].兰州: 兰州大学.
[41]刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
[42]苏涛, 卢震宇, 周杰, 等, 2014.全球水汽再循环率的空间分布及其季节变化特征[J].物理学报, 63(9): 457-466.
[43]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961—2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[44]伊兰, 陶诗言, 1997.一个降水再循环模型的建立及分析[J].水科学进展, 8(3): 205-211.
[45]赵天保, 符淙斌, 柯宗建, 等, 2010.全球大气再分析资料的研究现状与进展[J].地球科学进展, 25(3): 242-254.
[46]朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
文章导航

/