[1]Arora V, Boer G, 2003.A representation of variable root distribution in dynamic vegetation models[J].Earth Interactions, 7(6): 141-144.DOI: 10.1175/1087-3562(2003)0072.0.CO; 2.
[2]Avissar R, Silva D P L, Silva D M A F, al et, 2002.The large-scale biosphere-atmosphere experiment in Amazonia (LBA): Insights and future research needs[J].Journal of Geophysical Research: Atmospheres, 107D20: 8086.DOI: 10.1029/2002jd002704.
[3]Betts R, 1997.Contrasting physiological and structural vegetation feedbacks in climate change simulations[J].Nature, 387(6635): 796-799.DOI: 10.1038/42924.
[4]Bonan G B, 1996.A land surface model (LSM version1.0 for ecological, hydrological, and atmospheric studies: Technical description and user's guide[M].NCAR Technical Note NCAR/TN-417+STR.National Center for Atmospheric Research, Boulder, Colorado.DOI: 10.5065/D6DF6P5X.
[5]Copley J, 2000.Ecology goes underground[J].Nature, 406(6795): 452-454.DOI: 10.1038/35020131.
[6]Cox P M, 2001.Description of the “TRIFFID” dynamic global vegetation model[R].Hadley Centre technical note 24, Hadley Centre, Met Office.
[7]Dickinson R E, Henderson S A, Kennedy P J, 1993.Biosphere-Atmosphere Transfer Scheme (BATS) version1.0 as coupled to the NCAR community climate model[M].NCAR Tech.Note NCAR/TN-387+STR.National Center for Atmospheric Research, Boulder, Colorado.DOI: 10.5065/D67W6959.
[8]Gale M R, Grigal D F, 1987.Vertical root distribution of northern tree species in relation to successional status[J].Canadian Journal of Forest Research, 17(8): 829-834.DOI: 10.1139/x87-131.
[9]Hatzis J J, 2010.The development of a dynamic root distribution for the community land model with carbon-nitrogen interactions[D].DeKalb: North Illinois University, 1-184.
[10]Homaee M, Feddes R A, Dirksen C, 2002.Simulation of root water uptake: III.Non-uniform transient combined salinity and water stress[J].Agricultural Water Management, 57(2): 127-144.DOI: 10.1016/S0378-3774(02)00073-2.
[11]Jackson R B, Mooney H A, Schulze E D, 1997.A global budget for fine root biomass, surface area, and nutrient contents[J].Proceedings of the National Academy of Sciences, 94(14): 7362-7366.DOI: 10.1073/pnas.94.14.7362.
[12]Kleidon A, Heimann M, 1998.A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle[J].Global Change Biology, 4(3): 275-286.DOI: 10.1046/j.1365-2486.1998.00152.x.
[13]Laio F, D’Odorico P, Ridolfi L, 2006.Ananalytical model to relate the vertical root distribution to climate and soil properties[J].Geophysical Research Letters, 33: L18401.DOI: 10.1029/2006GL027331.
[14]McGuire A D, Melillo J M, Kicklighter D W, al et, 1997.Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration[J].Global Biogeochemical Cycles, 11: 173-189.DOI: 10.1029/97gb00059.
[15]Mitchell K, 2005.The community NOAH Land-Surface Model (LSM) user’s guide[R].Public Release Version 2.7.1; National Weather Service, National Center for Environmental Prediction: Camp Springs, MD, USA.
[16]Mokany K, Raison R J, Prokushkin A S, 2005.Critical analysis of root: Shoot ratios in terrestrial biomes[J].Global Change Biology, 12(1): 84-96.DOI: 10.1111/j.1365-2486.2005.001043.x.
[17]Oleson K W, Lawrence D M, Bonan G B, al et, 2010.Technical Description of version4.0 of the Community Land Model (CLM)[M].NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257.
[18]Oleson K W, Lawrence D M, Bonan G B, al et, 2013.Technical Description of version4.5 of the Community Land Model (CLM)[M].Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422.DOI: 10. 5065/D6RR1W7M.
[19]Quijano J C, 2012.Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution[J].Water Resources Research, 48: W05518.DOI: 10.1029/2011WR011416.
[20]Schneider C L, Attinger S, Delfs J O, al et, 2010.Implementing small scale processes at the soil-plant interface-the role of root architectures for calculating root water uptake profiles[J].Hydrology and Earth System Sciences, 14(2): 279-289.DOI: 10.5194/hess-14-279-2010.
[21]Sellers P J, Mintz Y, Sud Y C, al et, 1986.A Simple Biosphere Model (SIB) for use within general circulation models[J].Journal of the Atmospheric Sciences, 43(6): 505-531.DOI: 10.1175/1520-0469(1986)043<0505: asbmfu>2.0.co; 2.
[22]Shangguan W, Dai Y J, Duan Q Y, al et, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems, 6: 249-263.DOI: 10.1002/2013MS000293.
[23]Xue Y K, Sellers P J, Kinter J L, al et, 1991.A simplified biosphere model for global climate studies[J].Journal of Climate, 4: 345-364.
[24]Zeng X B, 2001.Global vegetation root distribution for land modeling[J].Journal of Hydrometeorology, 2(5): 525-530.DOI: 10. 1175/1525-7541(2001)002<0525: GVRDFL>2.0.CO; 2.
[25]Zhan X W, Xue Y K, Collatz G J, 2003.An analytical approach for estimating CO<sub>2</sub> and heat fluxes over the Amazonian region[J].Ecological Modeling, 162(1/2): 97-117.DOI: 10.1016/s0304-3800(02)00405-2.
[26]Zhang Z Q, Xue Y K, Glen M D, al et, 2015.Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model[J].Journal of Geophysical Research: Atmospheres, 120(4): 1300-1321.DOI: 10.1002/2014jd021963.
[27]才奎冶, 刘晶淼, 张正秋, 等, 2015.陆面模式中根系参数的改进及其对模拟结果的影响[J].应用生态学报, 26(10): 3111-3118.DOI: 10.13287/j.1001-9332.20150921.006.
[28]陈海山, 孙照渤, 2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报, 25(2): 277-288.DOI: 10.3969/j.issn. 1674-7097.2002.02.021.
[29]陈银萍, 牛亚毅, 李伟, 等, 2019.科尔沁沙地自然恢复沙质草地生态系统碳通量特征[J].高原气象, 38(3): 650-659.DOI: 10. 7522/j.issn.1000-0534.2018.00133.
[30]戴永久, 曾庆存, 1996.陆面过程研究[J].水科学进展, 7增刊): 40-53.DOI: 10.14042/j.cnki.32.1309.1996.s1.007.
[31]郭京衡, 李尝君, 曾凡江, 等, 2016.2种荒漠植物根系生物量分布与土壤水分、 养分的关系[J].干旱区研究, 33(1): 169-174.DOI: 10.1386/j.azr.2016.01.21.
[32]黄建辉, 韩兴国, 陈灵芝, 1996.森林生态系统根系生物量研究进展[J].生态学报, 19(2): 270-277.DOI: 10.3321/j.issn: 1000-0933.1999.02.021.
[33]吉喜斌, 康尔泗, 陈仁升, 等, 2006.植物根系吸水模型研究进展[J].西北植物学报, 26(3): 214-1086.DOI: 10.11686/cyxb2016146.
[34]刘允芬, 宋霞, 孙晓敏, 等, 2004.千烟洲人工针叶林CO<sub>2</sub>通量季节变化及其环境因子的影响[J].中国科学(地球科学), (A02): 109-117.
[35]李凯, 高艳红, Chen F, 等, 2015.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象, 34(3): 642-652.DOI: 10.7522/j.issn.1000-0534.2015.00035.
[36]刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J].高原气象, 37(5): 1177-1187.DOI: 10.7522/j.issn.1000-0534.2018.00016.
[37]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[38]牛国跃, 洪钟祥, 孙菽芬, 1997.陆面过程研究的现状与发展趋势[J].地球科学进展, 12(1): 20-25.
[39]孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社, 1-370.
[40]王媛媛, 2016.考虑植被根系动态变化的陆面过程模式发展及应用[D].北京: 中国科学院大学, 1-110.
[41]王玉阳, 陈亚鹏, 2017.植物根系吸水模型研究进展[J].草业学报, 26(3): 214-225.DOI: 10.11686/cyxb2016146.
[42]阳园燕, 郭安红, 安顺清, 等, 2004.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技, 32(5): 316-321.DOI: 10.3969/j.issn.1671-6345.2004.05.003.
[43]张经天, 席海洋, 王春林, 等, 2019.基于地下水位变化的荒漠河岸林蒸散估算[J].高原气象, 38(1): 179-186.DOI: 10.7522/j.issn.1000-0534.2018.00071.
[44]朱晗晖, 张宇, 沈晓燕, 等, 2018.农牧交错带植被演变对区域气候影响的模拟[J].高原气象, 37(3): 721-733.DOI: 10.7522/j.issn.1000-0534.2018.00050.